DE EXAM
 Texas A\&M High School Math Contest
 November 2014

Directions: If units are involved, include them in your answer.

1. Consider the following system of equations: $\left\{\begin{aligned} x^{4}+y^{4} & =17 \\ x+y & =3 .\end{aligned}\right.$. If $x<y$, find $x^{2014}+2015 x-y$.
2. Determine $x^{14}+x^{-14}$, where x satisfies the equation $x^{2}+x+1=0$.
3. Find the last digit of S, where $S=0^{2}+1^{2}+2^{2}+\ldots+99^{2}$.
4. How many solutions does the system

$$
\begin{aligned}
& \sin (x+y)=0 \\
& \sin (x-y)=0
\end{aligned}
$$

have, if $0 \leq x \leq \pi$ and $0 \leq y \leq \pi$?
5. Let $p(x)=x(x+1)(x+2)(x+3)$. Find the minimal value of $p(x)$.
6. A two digit number is equal to the sum of the square of the units digit and the cube of the tens digits. Find this number.
7. Given $x^{4}+x^{3}+2 x^{2}+s x+t$ is a perfect square polynomial (i.e. there is a polynomial $p(x)$ such that $\left.x^{4}+x^{3}+2 x^{2}+s x+t=[p(x)]^{2}\right)$, find $s^{2}+t$.
8. Find $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}+\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ if $\frac{x+y}{x-y}+\frac{x-y}{x+y}=3$.
9. How many natural numbers are solutions to the equation $2 n-3=\frac{1-2 n^{4}}{n^{5}}$?
10. In the trapezoid $A B C D(A D \| B C), A B=5$ and $E F$ is perpendicular to $A B$, where E is the center of $C D$ (see the picture below). Find the area of the trapezoid, if $E F=4$.

11. If $\tan \alpha+\tan \beta=2$ and $\cot \alpha+\cot \beta=3$, find $\tan (\alpha+\beta)$.
12. Let $0 \leq y \leq \pi$. Find $x+y$, where x and y are solutions of the following system:

$$
\begin{array}{r}
x^{2}+2014 \sin ^{2} y-2014=0 \\
\cos x-2 \cos ^{2} y-1=0
\end{array}
$$

13. Find the maximal value of the function $f(x, y)=x+y$ subject to the following conditions:

$$
\begin{aligned}
& (2 \sin x-1)(2 \sqrt{3} \cos y-3)=0 \\
& 0 \leq x \leq \frac{3 \pi}{2}, \quad \pi \leq y \leq 2 \pi
\end{aligned}
$$

14. Let x be an integer number such that two of the inequalities

$$
2 x>70, \quad x<100, \quad 4 x>25, \quad x>5
$$

are true, and other two are false. Find x.
15. How many positive integers n, not exceeding 2014, are there such that the sum $1^{n}+2^{n}+3^{n}+4^{n}$ ends in zero?
16. Let $f(x)=A x^{2}-A x+1$, where A is a positive real number. Find the maximal possible value of A such that $|f(x)| \leq 1$ for $0 \leq x \leq 1$.
17. Consider the function $f(x)$ defined on the interval $(0,+\infty)$ with the following properties:
(a) $f(x)>0$ for all x;
(b) $f(1)+f(2)=10$;
(c) $f(x+y)=f(x)+f(y)+2 \sqrt{f(x) f(y)}$ for all x, y.

Find $f\left(2^{2014}\right)$.
18. Bob and Alice run 10 kilometers. They start at the same place, run 5 kilometers up a hill, and return to the starting point by the same route. Bob has a 10 -minute head start and runs at the rate $15 \mathrm{~km} /$ hour uphill and $20 \mathrm{~km} /$ hour downhill. Alice runs $16 \mathrm{~km} /$ hour uphill and $22 \mathrm{~km} /$ hour downhill. How far from the top of the hill are they when they pass going in opposite directions?
19. A company sells almond butter in cylindrical cans. Marketing research suggests that using wider cans will increase sales. Suppose that the radius of the cans is increased by 25% without altering the volume. By what percent must the height be decreased?
20. Let $\Pi(n)$ and $\Sigma(n)$ denote the product and sum, respectively, of the digits of the integer n. For example, $\Pi(72)=\Pi(27)=14$ and $\Sigma(72)=\Sigma(27)=9$. Let N be a two-digit integer such that $N=\Pi(N)+\Sigma(N)$. What is the units digit of N ?

