DE EXAM Texas A&M High School Math Contest November 2014

Directions: If units are involved, include them in your answer.

- 1. Consider the following system of equations: $\begin{cases} x^4 + y^4 = 17 \\ x + y = 3. \end{cases}$. If x < y, find $x^{2014} + 2015x y$.
- 2. Determine $x^{14} + x^{-14}$, where x satisfies the equation $x^2 + x + 1 = 0$.
- 3. Find the last digit of *S*, where $S = 0^2 + 1^2 + 2^2 + \ldots + 99^2$.
- 4. How many solutions does the system

$$\sin(x+y) = 0$$

$$\sin(x-y) = 0$$

have, if $0 \le x \le \pi$ and $0 \le y \le \pi$?

- 5. Let p(x) = x(x+1)(x+2)(x+3). Find the minimal value of p(x).
- 6. A two digit number is equal to the sum of the square of the units digit and the cube of the tens digits. Find this number.
- 7. Given $x^4 + x^3 + 2x^2 + sx + t$ is a perfect square polynomial (i.e. there is a polynomial p(x) such that $x^4 + x^3 + 2x^2 + sx + t = [p(x)]^2$), find $s^2 + t$.
- 8. Find $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2}$ if $\frac{x+y}{x-y} + \frac{x-y}{x+y} = 3$.
- 9. How many natural numbers are solutions to the equation $2n 3 = \frac{1 2n^4}{n^5}$?
- 10. In the trapezoid ABCD (AD||BC), AB = 5 and EF is perpendicular to AB, where E is the center of CD (see the picture below). Find the area of the trapezoid, if EF = 4.

11. If $\tan \alpha + \tan \beta = 2$ and $\cot \alpha + \cot \beta = 3$, find $\tan(\alpha + \beta)$.

12. Let $0 \le y \le \pi$. Find x + y, where x and y are solutions of the following system:

$$x^{2} + 2014 \sin^{2} y - 2014 = 0,$$

$$\cos x - 2 \cos^{2} y - 1 = 0.$$

13. Find the maximal value of the function f(x, y) = x + y subject to the following conditions:

$$(2\sin x - 1)(2\sqrt{3}\cos y - 3) = 0, 0 \le x \le \frac{3\pi}{2}, \quad \pi \le y \le 2\pi.$$

14. Let x be an integer number such that two of the inequalities

 $2x > 70, \quad x < 100, \quad 4x > 25, \quad x > 5$

are true, and other two are false. Find x.

- 15. How many positive integers n, not exceeding 2014, are there such that the sum $1^n + 2^n + 3^n + 4^n$ ends in zero?
- 16. Let $f(x) = Ax^2 Ax + 1$, where A is a positive real number. Find the maximal possible value of A such that $|f(x)| \le 1$ for $0 \le x \le 1$.
- 17. Consider the function f(x) defined on the interval $(0, +\infty)$ with the following properties:

(a)
$$f(x) > 0$$
 for all x ;
(b) $f(1) + f(2) = 10$;
(c) $f(x+y) = f(x) + f(y) + 2\sqrt{f(x)f(y)}$ for all x, y .

Find $f(2^{2014})$.

- 18. Bob and Alice run 10 kilometers. They start at the same place, run 5 kilometers up a hill, and return to the starting point by the same route. Bob has a 10-minute head start and runs at the rate 15km/hour uphill and 20km/hour downhill. Alice runs 16km/hour uphill and 22km/hour downhill. How far from the top of the hill are they when they pass going in opposite directions?
- 19. A company sells almond butter in cylindrical cans. Marketing research suggests that using wider cans will increase sales. Suppose that the radius of the cans is increased by 25% without altering the volume. By what percent must the height be decreased?
- 20. Let $\Pi(n)$ and $\Sigma(n)$ denote the product and sum, respectively, of the digits of the integer n. For example, $\Pi(72) = \Pi(27) = 14$ and $\Sigma(72) = \Sigma(27) = 9$. Let N be a two-digit integer such that $N = \Pi(N) + \Sigma(N)$. What is the units digit of N?