SOLUTIONS DE EXAM Texas A\&M High School Math Contest
November 2014

Directions: If units are involved, include them in your answer.

1. Consider the following system of equations:

$$
\left\{\begin{aligned}
x^{4}+y^{4} & =17 \\
x+y & =3
\end{aligned}\right.
$$

If $x<y$, find $x^{2014}+2015 x-y$.
Solution. Let $x y=u$. Then $x^{2}+y^{2}=9-2 x y=9-2 u$ and $(9-2 u)^{2}-2 u^{2}=x^{4}+y^{4}=17$. The last equality implies $u^{2}-18 u+32=0$, i.e. $u=2$ or $u=16$. So, the given system is equivalent to

$$
\left\{\begin{array} { r l }
{ x y } & { = 2 } \\
{ x + y } & { = 3 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
x y & =16 \\
x+y & =3
\end{array}\right.\right.
$$

The first system has a unique solution satisfying the condition $x<y$. Namely, $(x, y)=(1,2)$. The second one does not have a solution.
Thus, $x^{2014}+2015 x-y=1^{2014}+2015 \cdot 1-2=2014$.
Answer: 2014
2. Determine $x^{14}+x^{-14}$, where x satisfies the equation $x^{2}+x+1=0$.

Solution. First note that $x \neq 0$. Dividing both sides of the given equation by x, we get $x+1+x^{-1}=$ 0 , or $x+x^{-1}=-1$. Multiplying both sides of the given equation by x, we get $x^{3}+x^{2}+x=0$, or $x^{3}=-\left(x^{2}+x\right)=-(-1)=1$ (by the given equation). Hence, $x^{14}+x^{-14}=\left(x^{3}\right)^{4} x^{2}+\left(x^{3}\right)^{-2} x^{-2}=$ $x^{2}+x^{-2}=\left(x+x^{-1}\right)^{2}-2=1-2=-1$.
Answer: -1
3. Find the last digit of S, where $S=0^{2}+1^{2}+2^{2}+\ldots+99^{2}$.

Solution. Let us denote by $\phi(A)$ the last digit of a number A. If

$$
\begin{aligned}
& 0^{2}+1^{2}+2^{2}+\ldots+9^{2}=S_{0} \\
& 10^{2}+11^{2}+12^{2}+\ldots+19^{2}=S_{1} \\
& \ldots
\end{aligned},
$$

then $\phi\left(S_{0}\right)=\phi\left(S_{1}\right)=\ldots=\phi\left(S_{9}\right)$. Since
$S=S_{0}+S_{1}+\ldots+S_{9}$, we get

$$
\phi(S)=\phi\left(\phi\left(S_{0}\right)+\phi\left(S_{1}\right)+\ldots+\phi\left(S_{9}\right)\right)=\phi\left(10 \cdot \phi\left(S_{0}\right)\right)=0 .
$$

Answer: 0
4. How many solutions does the system

$$
\begin{aligned}
& \sin (x+y)=0 \\
& \sin (x-y)=0
\end{aligned}
$$

have, if $0 \leq x \leq \pi$ and $0 \leq y \leq \pi$?
Solution. The first equation implies $x+y=n \pi$ for some integer n. The second equation yields $x-y=m \pi$ for some integer m. Since we are looking for a solution such that both x and y are from 0 to π, we conclude that

$$
\begin{aligned}
& 0 \leq m+n \leq 2 \\
& 0 \leq n-m \leq 2
\end{aligned}
$$

Note that the only values n can take are $0,1,2$. If $n=0$, then $m=0$. If $n=1$, then $m=-1,0,1$. If $n=2$, then $m=0$. So, there are 5 solutions in total: $(x, y)=(0,0),(0, \pi),(\pi / 2, \pi / 2),(\pi, 0),(\pi, \pi)$.
Answer: 5
5. Let $p(x)=x(x+1)(x+2)(x+3)$. Find the minimal value of $p(x)$.

Solution. Note that $p(x)=x(x+1)(x+2)(x+3)=x(x+3) \cdot(x+1)(x+2)=\left(x^{2}+3 x\right)\left(x^{2}+3 x+2\right)$. Let $z=x^{2}+3 x$. Then $p(x)=z(z+2)=z^{2}+2=(z+1)^{2}-1$. It follows that the minimal value of $p(x)$ is -1 and it is attained when $z=-1$. Since the equation $x^{2}+3 x=-1$ has real solutions (the discriminant of this quadratic equation is positive), we conclude that there is x such that $p(x)=-1$.
Answer: - 1
6. A two digit number is equal to the sum of the square of the units digit and the cube of the tens digits. Find this number.

Solution. Let a be the units digit and b be the tens digit of the given number. Then

$$
\begin{equation*}
10 b+a=a^{2}+b^{3}, \tag{1}
\end{equation*}
$$

or $b\left(10-b^{2}\right)=a(a-1)$. Note that the left hand side of the last equality is always positive and even. Therefore b is also even and $10-b^{2}>0$. These yields $b \leq 3$, and then $b=2$. If $b=2$ then (1) implies $a^{2}-a-12=0$. The only positive root of this equation is $a=4$.
Answer: 24
7. Given $x^{4}+x^{3}+2 x^{2}+s x+t$ is a perfect square polynomial (i.e. there is a polynomial $p(x)$ such that $\left.x^{4}+x^{3}+2 x^{2}+s x+t=[p(x)]^{2}\right)$, find $s^{2}+t$.

Solution. First note that that the polynomial $p(x)$ must be quadratic. Thus, let $p(x)=a x^{2}+b x+c$.
Then $x^{4}+x^{3}+2 x^{2}+s x+t=\left(a x^{2}+b x+c\right)^{2}$. For the two sides of the last equality to be equal, the coefficients of the two polynomials must be equal. So, equating the coefficients, we get
$a=1,2 b=1, b^{2}+2 c=2,2 b c=s, c^{2}=t$. Solving this system, we obtain $a=1, b=1 / 2, c=s=$ $7 / 8, t=49 / 64$. So, $s^{2}+t=\frac{49}{32}$
Answer: $\frac{49}{32}$
8. Find

$$
\frac{x^{2}+y^{2}}{x^{2}-y^{2}}+\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

if

$$
\frac{x+y}{x-y}+\frac{x-y}{x+y}=3 .
$$

Solution. We have

$$
3=\frac{x+y}{x-y}+\frac{x-y}{x+y}=\frac{2\left(x^{2}+y^{2}\right)}{x^{2}-y^{2}} .
$$

Therefore,

$$
\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{3}{2}
$$

and

$$
\frac{x^{2}+y^{2}}{x^{2}-y^{2}}+\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}
$$

Answer: 13/6
9. How many natural numbers are solutions to the equation $2 n-3=\frac{1-2 n^{4}}{n^{5}}$?

Solution. Rewrite the given equation in the form $2 n^{6}-3 n^{5}+2 n^{4}=1$, or $n\left(2 n^{5}-3 n^{4}+2 n^{3}\right)=1$. Since the left hand side of the last equation is divisible by n, then the right hand side must be divisible by n. Hence, $n=1$ is the only natural solution of the given equation.
Answer: 1
10. In the trapezoid $A B C D(A D \| B C), A B=5$ and $E F$ is perpendicular to $A B$, where E is the center of $C D$ (see the picture below). Find the area of the trapezoid, if $E F=4$.

Solution. Let GH be parallel to AB as it is shown on the picture below.

Then ABHG is a parallelogram. Moreover, the triangles GED and CHE are congruent (two angles and the included side are the same). Thus,

$$
\operatorname{Area}(A B C D)=\operatorname{Area}(A B H G)=2 \operatorname{Area}(A B E)=2\left(\frac{1}{2} A B \cdot E F\right)=5 \cdot 4=20
$$

Answer: 20
11. If $\tan \alpha+\tan \beta=2$ and $\cot \alpha+\cot \beta=3$, find $\tan (\alpha+\beta)$.

Solution. $\frac{2}{\tan \alpha \tan \beta}=\frac{\tan \alpha+\tan \beta}{\tan \alpha \tan \beta}=\cot \alpha+\cot \beta=3$. Hence, $\tan \alpha \tan \beta=\frac{2}{3}$ and

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{2}{1-\frac{2}{3}}=6 .
$$

Answer: 6
12. Let $0 \leq y \leq \pi$. Find $x+y$, where x and y are solutions of the following system:

$$
\begin{array}{r}
x^{2}+2014 \sin ^{2} y-2014=0, \\
\cos x-2 \cos ^{2} y-1=0
\end{array}
$$

Solution. The second equation implies $2 \cos ^{2} y=\cos x-1 \leq 0$ and then $\cos ^{2} y=0$, i.e. $y=\pi / 2$. Also $\sin ^{2} y=1$ and then the first equation yields $x=0$. So, $x+y=\pi / 2$.
Answer: $\pi / 2$
13. Find the maximal value of the function $f(x, y)=x+y$ subject to the following conditions:

$$
\begin{gathered}
(2 \sin x-1)(2 \sqrt{3} \cos y-3)=0 \\
0 \leq x \leq \frac{3 \pi}{2}, \quad \pi \leq y \leq 2 \pi
\end{gathered}
$$

Solution. The given equation implies that $\sin x=1 / 2$ or $\cos y=\sqrt{3} / 2$. In each of these cases, the sum $x+y$ is maximal if each of the terms is maximal. In the first case this means that $x=5 \pi / 6, y=2 \pi$, and in the second case this means that $x=3 \pi / 2, y=11 \pi / 6$. Since $f(5 \pi / 6,2 \pi)=17 \pi / 6$ and $f(3 \pi / 2,11 \pi / 6)=10 \pi / 3$, we conclude that the maximal value of f under the above conditions is $10 \pi / 3$.

Answer: $10 \pi / 3$
14. Let x be an integer number such that two of the inequalities

$$
2 x>70, \quad x<100, \quad 4 x>25, \quad x>5
$$

are true, and other two are false. Find x.
Solution. Since x is integer, we can rewrite the given inequalities:
(a) $x>35$,
(b) $x<100$,
(c) $x>6$,
(d) $x>5$.

If (a) is false, then the remaining three inequalities are true, which is a contradiction So (a) must be false, which then forces (b) to be true. This implies exactly one of (c) and (d) is true. This forces x to satisfy $5<x \leq 6$. Hence x must equal 6 .
Answer: 6
15. How many positive integers n, not exceeding 2014, are there such that the sum $1^{n}+2^{n}+3^{n}+4^{n}$ ends in zero?

Solution. It is sufficient to consider the following three cases:
Case 1: n is odd. Then $1^{n}+4^{n}$ is also odd and divisible by $1+4=5$. So, it ends in 5 . Similarly, $2^{n}+3^{n}$ ends in 5 . Therefore, the given sum ends in zero.
Case 2: $n=4 k+2$ for some non negative integer k. Then $1^{n}+2^{n}$ is odd and divisible by $1^{2}+2^{2}=5$. So, it ends in 5 . Similarly, $3^{n}+4^{n}$ is odd and divisible by $3^{2}+4^{2}=25$, i.e. ends in 5 . Therefore, the given sum ends in zero again.
Case 3: $n=4 k$ for some positive integer k. Since the last digit of 2^{4} and 4^{4} is 6 , the last digit of $2^{n}=\left(2^{4}\right)^{k}$ and $4^{n}=\left(4^{4}\right)^{k}$ is also 6. Similarly, the last digit of 3^{n} is 1 . So, the given sum ends by 4 in this case.
There are 503 positive integers divisible by 4 and not exceeding 2014 (note that $503 \cdot 4=$ 2012). So, we obtain $2014-503=1511$ numbers such that the given sum ends in zero.

Answer: 1511
16. Let $f(x)=A x^{2}-A x+1$, where A is a positive real number. Find the maximal possible value of A such that $|f(x)| \leq 1$ for $0 \leq x \leq 1$.

Solution. The graph of f is a parabola. Since $f(0)=f(1)=1$, this parabola is symmetric about $x=0.5$. In addition, $|f(x)| \leq 1$ implies that the branches of the parabola are directed upward. The minimal value of $f(x)$ is $f(0.5)=1-A / 4$. And the maximal possible value of A satisfies the condition $f(0.5)=1-A / 4=-1$, i.e. when $A=8$.

Answer: 8

17. Consider the function $f(x)$ defined on the interval $(0,+\infty)$ with the following properties:
(a) $f(x)>0$ for all x;
(b) $f(1)+f(2)=10$;
(c) $f(x+y)=f(x)+f(y)+2 \sqrt{f(x) f(y)}$ for all x, y.

Find $f\left(2^{2014}\right)$.
Solution. The last property implies that $f(2 x)=f(x+x)=4 f(x)$. In particular, $f(2)=4 f(1)$ and combining this with (b) we obtain that $5 f(1)=10$, i.e. $f(1)=2$. We have $f(x+y)=$ $(\sqrt{f(x)}+\sqrt{f(y)})^{2}$. This identity implies that for any positive integer $n, f(n x)=n^{2} f(x)$. Thus, $f\left(2^{2014}\right)=2^{2028} f(1)=2^{2049}$.
Answer: 2^{4029}
18. Bob and Alice run 10 kilometers. They start at the same place, run 5 kilometers up a hill, and return to the starting point by the same route. Bob has a 10 -minute head start and runs at the rate $15 \mathrm{~km} /$ hour uphill and $20 \mathrm{~km} /$ hour downhill. Alice runs $16 \mathrm{~km} / \mathrm{hour}$ uphill and $22 \mathrm{~km} / \mathrm{hour}$ downhill. How far from the top of the hill are they when they pass going in opposite directions?

Solution. Let t be the time (in hrs) since the start of the race and x be the distance from the top of the hill to the point where they meet. Since Alice starts $1 / 6 \mathrm{hr}$ later, the distance she has traveled uphill is $16(t-1 / 6)=5-x$. On Bob's trip downhill ($1 / 3 \mathrm{hr}$ after starting), he has traveled the distance x in $t-1 / 3 \mathrm{hrs}$, so $20(t-1 / 3)=x$. Solving these equations yields $t=\frac{43}{108}$ hrs and $x=\frac{35}{27} \mathrm{~km}$.
Answer: $35 / 27 \mathrm{~km}$
19. A company sells almond butter in cylindrical cans. Marketing research suggests that using wider cans will increase sales. Suppose that the radius of the cans is increased by 25% without altering the volume. By what percent must the height be decreased?

Solution. Let r and h be the radius and height of the original can and let R and H be the radius and the height of the new can. Then $R=1.25 r=\frac{5}{4} r$. The volume of the can is

$$
\pi r^{2} h=\pi R^{2} H=\pi\left(\frac{5}{4} r\right)^{2} H
$$

and

$$
H=\frac{\pi r^{2}}{\pi\left(\frac{5}{4} r\right)^{2}} h=\frac{16}{25} h
$$

Thus the height has been decreased by $(1-16 / 25)=9 / 25=36 / 100=36 \%$.
Answer: 36\%
20. Let $\Pi(n)$ and $\Sigma(n)$ denote the product and sum, respectively, of the digits of the integer n. For example, $\Pi(72)=\Pi(27)=14$ and $\Sigma(72)=\Sigma(27)=9$. Let N be a two-digit integer such that $N=\Pi(N)+\Sigma(N)$. What is the units digit of N ?

Solution. Write N in the form $10 a+b$, where a is one of the numbers $1,2, \cdots, 9$ and b is one of the numbers $0,1,2, \cdots, 9$. Then we have:

$$
10 a+b=N=\Pi(N)+\Sigma(N)=a b+(a+b)
$$

So, $9 a=a b$ and since $a \neq 0$, we conclude that $b=9$.
Answer: 9

