Solutions to EF Exam

Texas A\&M High School Math Contest
08 November, 2014

1. Multiplying by $x-4$ yields $x^{2}-5=2 x^{2}+x-36+11$, or $x^{2}+x-20=0$. The solutions to this equation are $x=-5$ and $x=4$; however, $x=4$ is not in the domain of the expressions on either side of the equation. Therefore, the only solution (hence the sum of all solutions) is $\mathbf{- 5}$.
2. $x(x+y+1)=14$ and $y(x+y+1)=28$, so $y=2 x$. Substituting into the first equation yields $3 x^{2}+x-14=0$, or $(3 x+7)(x-2)=0$. Therefore, $x=-\frac{7}{3}$ and $y=-\frac{14}{3} .\left(-\frac{\mathbf{7}}{\mathbf{3}},-\frac{\mathbf{1 4}}{\mathbf{3}}\right)$.
3. Multiply the second equation by 2 and add to the first equation to yield $\frac{5}{\sqrt{x}}=\frac{10}{3}$, or $\sqrt{x}=\frac{3}{2}$. Substitute into either equation to yield $\sqrt{y}=\frac{3}{2}$. So $\sqrt{x}+\sqrt{y}=\mathbf{3}$.
4. Draw $\overline{O A}$ and $\overline{O M}$, forming right triangles $W A O$ and $O M N$ which are similar to $\triangle W I N$ and therefore to each other. $\triangle W A O$ is a 9-12-15 right triangle, which makes $\triangle O M N$ a 12-16-20 right triangle, so $U N=8$.
5. Draw lines connecting the centers and draw lines m and n parallel to ℓ through C and A respectively as shown below.

Let x be the radius of circle C. Then $C D=\sqrt{(18+x)^{2}-(18-x)^{2}}=6 \sqrt{2 x}$, and $C E=$ $\sqrt{(8+x)^{2}-(8-x)^{2}}=4 \sqrt{2 x}$, so $D E=10 \sqrt{2 x}$. But $\overline{D E} \cong \overline{A F}$ and $A F=\sqrt{(18+8)^{2}+(18-8)^{2}}=$ 24 , so $10 \sqrt{2 x}=24$. Solving for x yields a radius of $\frac{\mathbf{7 2}}{\mathbf{2 5}}$.
6. Let x, y, and z be the number of small, medium, and large trucks respectively. The augmented matrix for this system of equations is $\left[\begin{array}{ccc|c}1 & 1 & 1 & 25 \\ 400 & 800 & 1600 & 32000\end{array}\right]$, which row-reduces to $\left[\begin{array}{ccc|c}1 & 0 & -2 & -30 \\ 0 & 1 & 3 & 55\end{array}\right]$, meaning $x-2 z=-30$ and $y+3 z=55$. Since x, y, and z must be nonnegative integers, we have $15 \leq z \leq 18$. 18 large trucks
7. Let $x=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}$. Then $x^{2}=(2+\sqrt{3})+2 \sqrt{4-3}+(2-\sqrt{3})=6$, so $x=\sqrt{6}$. Therefore, $n=6$.
8. Moving all terms to one side and factoring yields $\left(\sin ^{2} x-1\right)(\sec x+2)=0$, so $\sin x= \pm 1$, meaning $x=\frac{\pi}{2}$ or $x=\frac{3 \pi}{2}$, or $\sec x=-2$, meaning $x=\frac{2 \pi}{3}$ or $x=\frac{4 \pi}{3}$. However, $\sec x$ is undefined at $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$, so the product of all solutions is $\frac{2 \pi}{3} \cdot \frac{4 \pi}{3}=\frac{\mathbf{8} \pi^{\mathbf{2}}}{\mathbf{9}}$.
9. Let $n=20^{m}$, where m is any real number. Then $\left(20^{m}\right)^{\log _{20} 14}=20^{m \log _{20} 14}=14^{m}=14^{2}$, so $m=2$ and $n=20^{2}=400$.
10. Place $\$ 1$ in the first bag, $\$ 2$ in the second bag, $\$ 4$ in the third bag, and so on, doubling each time, until you place $\$ 256$ in the ninth bag. The bags hold a total of $\$ 511$, so the last bag contains the remaining $\mathbf{\$ 4 8 9}$.
11. Note that the desired result is obtained by expanding the product

$$
\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots\right)\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\cdots\right)
$$

Each factor above is the sum of a positive geometric series, so the resulting sum is $\left(\frac{1}{1-\frac{1}{2}}\right)\left(\frac{1}{1-\frac{1}{3}}\right)=$ (2) $\left(\frac{3}{2}\right)=\mathbf{3}$.
12. The line is tangent to f at $(8,-4)$, so the limit is indeterminate. Either use L'Hospital's Rule or multiply numerator and denominator by $x^{2 / 3}+2 x^{1 / 3}+4$ to obtain $\lim _{x \rightarrow 8}\left(\frac{f(x)-(-4)}{x-8}\right)\left(x^{2 / 3}+2 x^{1 / 3}+4\right)=f^{\prime}(8) \cdot 12$ From the equation of the tangent line, $f^{\prime}(8)=-3$, so the limit is $\mathbf{- 3 6}$.
13. $f(x)=\frac{x^{2014}-1}{x-1}+\frac{1}{x-1}$. The first rational expression (call it $f_{1}(x)$) reduces to a 2013th degree polynomial, so $f_{1}^{(2014)}(x)=0$. Using induction, it can be shown that $\frac{d^{n}}{d x^{n}}\left(\frac{1}{x-1}\right)=$ $\frac{(-1)^{n} n!}{(x-1)^{n+1}}$, so $f^{(2014)}(x)=\frac{\mathbf{2 0 1 4 !}}{(\mathbf{x}-\mathbf{1})^{\mathbf{2 0 1 5}}}$.
14. Let (a, b) be the point where ℓ is tangent to the curve. An equation of the line is $y-b=$ $-\frac{b^{1 / 3}}{a^{1 / 3}}(x-a)$, or $y=-\frac{b^{1 / 3}}{a^{1 / 3}} x+b^{1 / 3}\left(a^{2 / 3}+b^{2 / 3}\right)=-\frac{b^{1 / 3}}{a^{1 / 3}} x+4 b^{1 / 3}$. The x-intercept is $\left(4 a^{1 / 3}, 0\right)$ and the y-intercept is $\left(0,4 b^{1 / 3}\right)$, so the length of the segment of ℓ is $4 \sqrt{a^{2 / 3}+b^{2 / 3}}=4 \sqrt{4}=\mathbf{8}$ (independent of a and b).
15. $\frac{\left(x^{2}+2\right)\left(y^{2}+2\right)\left(z^{2}+2\right)}{x y z}=\left(x+\frac{2}{x}\right)\left(y+\frac{2}{y}\right)\left(z+\frac{2}{z}\right)$, so the minimum value occurs when x, y, and z are all equal to the value of t which minimizes $f(t)=t+\frac{2}{t}, t>0 . f^{\prime}(t)=1-\frac{2}{t^{2}}$, so f has a positive critical value only at $t=\sqrt{2}$, and since $f^{\prime \prime}(\sqrt{2})=\frac{2}{2^{3 / 2}}>0, f$ is minimized at $t=\sqrt{2}$. Therefore, the minimum value of the expression is $\left(\sqrt{2}+\frac{2}{\sqrt{2}}\right)^{3}=\mathbf{1 6} \sqrt{\mathbf{2}}$
16. Let $\left(a, a^{2}\right)$ be the coordinates of $A,\left(b, b^{2}\right)$ be the coordinates of B, and $\left(c, c^{2}\right)$ be the coordinates of C. Also assume, without loss of generality, that $a<b$ as shown in the figure. The area of Φ is the area under $\overline{A B}$ minus the area under the parabola, or $\frac{1}{2}\left(a^{2}+b^{2}\right)(b-a)-\int_{a}^{b} x^{2} d x=\frac{1}{2}\left(a^{2}+\right.$ $\left.b^{2}\right)(b-a)-\frac{1}{3}\left(b^{3}-a^{3}\right)=\frac{1}{6}(b-a)\left(3 a^{2}+3 b^{2}-2\left(b^{2}+a b+a^{2}\right)\right)=\frac{1}{6}(b-a)\left(b^{2}-2 a b+a^{2}\right)=\frac{1}{6}(b-a)^{3}$. Using trapezoids drawn to the x-axis, the area of $\triangle A B C$ is $\frac{1}{2}\left(a^{2}+b^{2}\right)(b-a)-\frac{1}{2}\left(a^{2}+c^{2}\right)(c-a)-$ $\frac{1}{2}\left(c^{2}+b^{2}\right)(b-c)$. But the slope of the tangent line is $2 c=\frac{b^{2}-a^{2}}{b-a}=b+a$, so c is the average of a and b and $c-a=b-c=\frac{1}{2}(b-a)$, so the area is $\frac{1}{4}(b-a)\left(2 a^{2}+2 b^{2}-a^{2}-c^{2}-c^{2}-b^{2}\right)=$
$\frac{1}{4}(b-a)\left(a^{2}+b^{2}-2 c^{2}\right)=\frac{1}{4}(b-a)\left(a^{2}+b^{2}-\frac{b^{2}+2 a b+a^{2}}{2}\right)=\frac{1}{8}(b-a)\left(b^{2}-2 a b+a^{2}\right)=\frac{1}{8}(b-a)^{3}$.
Therefore, the ratio of the areas is $\frac{\frac{1}{6}(b-a)^{3}}{\frac{1}{8}(b-a)^{3}}=\frac{\mathbf{4}}{\mathbf{3}}$.
17. Let P^{\prime} be the point $(-2,0)$. Then $|P R-Q R|=\left|P^{\prime} R-Q R\right| \leq P^{\prime} Q$ by the Triangle Inequality, with the maximum value occuring at equality. This occurs when P^{\prime}, Q, and R are collinear. Using vectors or by finding the y-intercept of $\overleftrightarrow{P^{\prime} Q}$, we find the coordinates of R are (0,8), so $y=8$.
18. A line $y=m x+b$ intersects the curve in exactly four points if and only if $f(x)=x^{4}+3 x^{3}+$ $c x^{2}+(2-m) x+(4-b)$ has exactly four zeros, which means the derivative $f^{\prime}(x)=4 x^{3}+9 x^{2}+$ $2 c x+(2-m)$ has exactly three zeros and $f^{\prime \prime}(x)=12 x^{2}+18 x+2 c$ has exactly two zeros. This will be true if and only if $18^{2}-4(12)(2 c)>0$, or $c<\frac{18^{2}}{96}=\frac{27}{8}$. Conversely, if $c<\frac{27}{8}, f^{\prime \prime}$ has exactly two zeros, so f^{\prime} has exactly two extrema, so we can choose m so that f^{\prime} has a zero between the extrema, meaning f^{\prime} has exactly three zeros. Similarly, we can choose b so that f has exactly four zeros. Therefore, the value of N we seek is $\frac{\mathbf{2 7}}{\mathbf{8}}$.
19. Let $y=\sin x+\cos x$. Then $y^{2}=\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x=1+2 \sin x \cos x$, or $\sin x \cos x=$ $\frac{y^{2}-1}{2}$. Therefore, $\tan x+\cot x=\frac{1}{\sin x \cos x}=\frac{2}{y^{2}-1}$, and $\sec x+\csc x=\frac{\sin x+\cos x}{\sin x \cos x}=$ $\frac{2 y}{y^{2}-1}$. Therefore, the given problem is equivalent to minimizing $f(y)=\left|y+\frac{2}{y^{2}-1}+\frac{2 y}{y^{2}-1}\right|=$ $\left|y+\frac{2}{y-1}\right|$ for all $y \neq \pm 1$ (it can easily be shown that $y=\sin x+\cos x= \pm 1$ if and only if $\left.x=\frac{n \pi}{2}, n \in Z\right)$. Since $y+\frac{2}{y-1} \neq 0, f$ is differentiable everywhere on its domain. $f^{\prime}(y)=$ $\frac{y+\frac{2}{y-1}}{\left|y+\frac{2}{y-1}\right|}\left(1-\frac{2}{(y-1)^{2}}\right)=0$ when $y=1 \pm \sqrt{2}$. Since $f(1+\sqrt{2})=1+2 \sqrt{2}$ and $f(1-\sqrt{2})=$ $|1-2 \sqrt{2}|=2 \sqrt{2}-1$, we find the minimum of f is $\mathbf{2} \sqrt{\mathbf{2}} \mathbf{- 1}$.

