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Subcollection Sum Divisibility Theorems
Solutions

The goal of this problem set is to determine the values of k and n for which the following statement
is true or false:

P�k, n� : For every collection, S, of n integers there is a subcollection, T, of k integers whose sum
is divisible by k.

The first group of problems give examples with values of k and n where P�k, n� is true. The second
group of problems will determine all values of k and n for which P�k, n� is false by giving
counterexamples. And the third group of problems will determine all values of k and n for which
P�k, n� is true. First some definitions.

Definitions: A collection is a list of elements in which elements are allowed to repeat and the
order does not matter. So for example, S � �2, 3, 2, 5, 4, 7, 3� is a collection of 7 numbers.
Since the order of the elements does not matter, we can also write S � �2, 2, 3, 3, 4, 5, 7�
where we have written the numbers in ascending order. The number of times an element
repeats is its multiplicity. A collection T is a subcollection of S ( written T � S ) if every
element of T is an element of S and the multiplicity of each element in T is less than or equal
to its multiplicity in S. Thus for the same example, �2, 2, 3, 5� � S but �2, 3, 3, 3, 4, 5� � S. We
write |S| for the number of elements in S and �S for the sum of the elements in S. So for the
example S above, we have |S| � 7 and �S � 26. We also define S � r to be the collection
where r has been added to each element of S, and rS to be the collection where each
element of S has been multiplied by r. For the example S above, we have
S � 3 � �5, 5, 6, 6, 7, 8, 10� and 3S � �6, 6, 9, 9, 12, 15, 21�.

Rules: In proving each statement you can use the results of previous statements, even if you
have not been able to prove them. However, you can only use the results of subsequent
statements if you actually prove them.

Problem Group 1:
In this group of problems, you will determine several values of k and n for which P�k, n� is true.

1. Prove P�2, 3� : For every collection, S, of 3 integers there is a subcollection, T, of 2 integers
whose sum is divisible by 2.

Proof: Let S � �a, b, c�. If 2 or 3 of a, b, c are even, then the sum of 2 even elements is even and
divisible by 2. If 0 or 1 of a, b, c are even, then there are two odd elements which sum to an even
number which is dividible by 2. �

2. Lemma: If T is a collection of k integers which are all equal to each other mod k (that is, they
all have the same remainder when divided by k), then the sum of the elements in T is
divisible by k.

Proof: The elements of T satisfy a1 � a2 � � � ak � rmod k. So a1 � a2 � � � ak � k r � 0 mod k.
�
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3. Lemma: If T is a collection of k integers, then the sum mod k of the elements in T � r is equal
to the sum mod k of the elements in T.

In other words, the sum of the elements in T � r and the sum of the elements in T have the same
remainder when divided by k. Consequently, if the sum of the elements in T is divisible by k, then
the sum of the elements in T � r is also divisible by k and vice versa.

Proof: If T � �a1, a2,�, ak� then T � r � �a1 � r, a2 � r,�, ak � r� and
�a1 � r� � �a2 � r� � � � �ak � r� � a1 � a2 � � � ak � rk � a1 � a2 � � � ak mod k. �

4. Prove P�4, 7� : For every collection, S, of 7 integers there is a subcollection, T, of 4 integers
whose sum is divisible by 4.

Proof: Assume the elements of S are ordered in ascending order mod 4.

By Lemma 2, if 4 or more of the elements of S are congruent to the same number, say r mod 4,
then the sum of 4 of those is divisible by 4.

By Lemma 3, if you add the same number, say r, to all 7 numbers, then the sum of any 4 numbers
does not change mod 4.
Observe that each of the 7 numbers is equal to one of the numbers 0, 1, 2, 3 mod 4. By the
pigeonhole principle, one of the numbers 0, 1, 2, 3 mod 4 must occur at least twice.

Consequently, if we identify which number (mod 4) occurs most often and subtract that from all 7
numbers, then 0 mod 4 will occcur most often which is at least twice.

So we can assume that each of the numbers 0, 1, 2, 3 mod 4 occurs at most 3 times and 0 occurs at
least twice and occurs most often. These are the remaining possible values for S mod 4, and how
the subcollection T of 4 elements is chosen:

S � �0, 0, 0, 1, 1, 1, 2� T � �0, 1, 1, 2� S � �0, 0, 0, 1, 3, 3, 3� T � �0, 0, 1, 3�

S � �0, 0, 0, 1, 1, 1, 3� T � �0, 0, 1, 3� S � �0, 0, 0, 2, 2, 2, 3� T � �0, 0, 2, 2�

S � �0, 0, 0, 1, 1, 2, 2� T � �0, 0, 2, 2� S � �0, 0, 0, 2, 2, 3, 3� T � �0, 0, 2, 2�

S � �0, 0, 0, 1, 1, 2, 3� T � �0, 0, 1, 3� S � �0, 0, 0, 2, 3, 3, 3� T � �0, 2, 3, 3�

S � �0, 0, 0, 1, 1, 3, 3� T � �0, 0, 1, 3� S � �0, 0, 1, 1, 2, 2, 3� T � �0, 0, 1, 3�

S � �0, 0, 0, 1, 2, 2, 2� T � �0, 0, 2, 2� S � �0, 0, 1, 1, 2, 3, 3� T � �0, 0, 1, 3�

S � �0, 0, 0, 1, 2, 2, 3� T � �0, 0, 2, 2� S � �0, 0, 1, 2, 2, 3, 3� T � �0, 0, 1, 3�

S � �0, 0, 0, 1, 2, 3, 3� T � �0, 2, 3, 3�

In each case, �T � 0 mod 4. �

5. Theorem: If n � k2 � k � 1 then P�k, n� is true.

Proof: We apply the pigeonhole principle to distribute the n numbers in S into the k values
0, 1, 2,�, k � 1 mod k. If we have k numbers with the same value mod k, we use them as the
subcollection T by Lemma 2. To avoid this, we can assign at most k � 1 numbers to each of the k
values using up k�k � 1� � k2 � k numbers. However, since n � k2 � k � 1 at least one value mod k
must be repeated k times and therefore the subcollection T will exist. �
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Problem Group 2:
In this group of problems, you will determine all values of k and n for which P�k, n� is false.

6. Counterexample to P�2, 2� : Find a collection, S, of 2 integers for which there is no
subcollection, T, of 2 integers whose sum is divisible by 2.

Solution: Let S � �0, 1�. The only subcollection of 2 integers is �0, 1� and 0 � 1 � 1 which is not
divisible by 2. �

7. Counterexample to P�4, 6� : Find a collection, S, of 6 integers for which there is no
subcollection, T, of 4 integers whose sum is divisible by 4.

Solution: Let S � �0, 0, 0, 1, 1, 1�. The only subcollections of 4 integers and their sums are:
�0, 0, 0, 1� and 0 � 0 � 0 � 1 � 1 which is not divisible by 4
�0, 0, 1, 1� and 0 � 0 � 1 � 1 � 2 which is not divisible by 4
�0, 1, 1, 1� and 0 � 1 � 1 � 1 � 3 which is not divisible by 4 �

8. Counterexample to P�k, 2k � 2� : Find a collection, S, of 2k � 2 integers for which there is no
subcollection, T, of k integers whose sum is divisible by k.

Solution: Let S � �0,�, 0, 1,�, 1�, where there are k � 1 values of 0 and k � 1 values of 1. The
only subcollections of k integers and their sums are:

�0,�, 0, 1,�, 1�, where there are r values of 0 and k � r values of 1 with 1 � r � k � 1
The sum is r � 0 � �k � r� � 1 � k � r which is not divisible by k. �

9. Lemma: If P�k, n� is true for some k and n, then P�k, m� is also true for any m � n.

Proof: Assume P�k, n� is true for some k and n and let m � n. Let S be a collection with m elements.
Then let S� be a subcollection of S with n elements. By P�k, n�, there is a subcollection, T, of S�

consisting of k integers whose sum is divisible by k. Then T is also a subcollection of S with the
same properties. �

10. Theorem: For every k, if n � 2k � 2, then P�k, n� is false.

Proof: If n � 2k � 2, then problem 8 provides a counter example to P�k, n�.

If n � 2k � 2, we use proof by contradiction. Assume P�k, n� is true. Then by Lemma 9, P�k, 2k � 2�
is true. However, problem 8 provides a counterexample to P�k, 2k � 2�. So P�k, n� must be false.
�
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Problem Group 3:
In this group of problems, you will determine all values of k and n for which P�k, n� is true. The
strategy is to prove P�k, 2k � 1� when k is prime and separately when k is a product of two numbers
for which the theorem has already been proved. An application of mathematical induction will give
the theorem for all k’s. Since the second part is easier, we prove that first:

11. Theorem: If P�r, 2r � 1� and P�s, 2s � 1� are true, then P�rs, 2rs � 1� is true.

HINT: If S is a collection of 2rs � 1 numbers, construct disjoint subcollections T1, T2,�, T2s�1 each
with r elements whose sum is divisible by r.

Proof: We start with the collection S of n � 2rs � 1 numbers. Arbitrarily select 2r � 1 of these and
call it the collection S1 � S. By P�r, 2r � 1�, there is a subcollection T1 with r numbers whose sum is
divisible by r. Let this sum be �T1 � t1r and define S1

� � S � T1. In other words, we remove the r
elements of T1 from the collection S to produce the collection S1

� which has 2rs � 1 � r elements. We
repeat this process, arbitrarily picking a subcollection S2 � S1

� with 2r � 1 numbers. Within S2 there
is a subcollection T2 with r numbers whose sum is �T2 � t2r. Then we define S2

� � S1
� � T2 with

2rs � 1 � 2r elements. We want to repeat this process 2s � 1 times but we need to check the last
step works properly. So suppose we have already produced sets T1, T2,�, T2s�2 each with r
elements whose sums are t1r, t2r,�, t2s�2r leaving behind the collection S2s�2

� with
2 r s � 1 � �2s � 2�r � 2r � 1 elements. This is the exact number we need to apply P�r, 2r � 1� one
last time producing the collection T2s�1 with r numbers whose sum is �T2s�1 � t2s�1r.
Next, let S� � �t1, t2,�, t2s�2, t2s�1�. We apply P�s, 2s � 1� to the collection S� to produce a subcollection
T� � �t i1 , t i2 ,�, t is � with s elements whose sum is divisible by s. Then the sum of the numbers in rT�
is divisible by rs. Finally, let T � Ti1 � Ti2 �� � Tis . Then T has rs elements whose sum is divisible
by rs. �

We next prove P�p, 2p � 1� is true for primes p. First a lemma:

12. Lemma: Assume p is prime. Let A be a subset of I � �0, 1, 2,�, p � 1� with n distinct
elements where 1 � n � p and let B be a subset of I with 2 distinct elements. Define
�A � B�mod p to be the set �a � b�mod p � a � A and b � B . Then �A � B�mod p is a
subset of I with at least n � 1 distinct elements.

Proof: Let A � �a1, a2,�, an� where a1 � a2 � � � an and B � �b1, b2� where b1 � b2. Since the
numbers a1, a2,�, an are distinct, the numbers �a1 � b1�, �a2 � b1�,�, �an � b1�mod p are also
distinct. So the set �A � B�mod p has at least n distinct elements. To get a proof by contradiction,
assume that �A � B�mod p has only n distinct elements. Then the distinct numbers
�a1 � b2�, �a2 � b2�,�, �an � b2�mod p would have to coincide with the numbers
�a1 � b1�, �a2 � b1�,�, �an � b1�mod p but possibly in a different order. Adding the elements in each
set we get

a1 � a2 � � � an � nb1 � a1 � a2 � � � an � nb2 mod p

So nb1 � nb2 mod p. Since p is prime and 1 � n � p, we have b1 � b2 mod p which contradicts the
hypothesis that B has 2 distinct elements. Therefore, �A � B�mod p has at least n � 1 distinct
elements. �
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13. Theorem: If p is prime, then P�p, 2p � 1� is true.

HINT: Let S � �a1, a2,�, a2p�1� be the collection of 2p � 1 numbers written in ascending order:
a1 � a2 � � � a2p�1 mod p. Explain why you can assume no more than p � 1 of these are equal.
Construct T to contain the number a1 plus one number from each pair �a2, ap�1�, �, �ai, ai�p�1�, �,
�ap, a2p�1�. You need to show that the numbers can be chosen from each pair so that �T � 0 mod p.
Use the lemma.

Proof: Let S � �a1, a2,�, a2p�1� be a collection of 2p � 1 numbers written in ascending order:
a1 � a2 � � � a2p�1 mod p. Let A1 � B1 � �a1�. Let B i � �ai, ai�p�1� for i � 2,�p and recursively let
A i � �A i�1 � B i�mod p. First notice that we can assume that the numbers in each pair
B i � �ai, ai�p�1� are distinct. Otherwise the p numbers ai � � � ai�p�1 would all be equal and would
form the subcollection T which proves the theorem by Lemma 2. Now since |A1 | � 1, by Lemma 12,
|A2 | 	 2. Recursively, Lemma 12 implies |A i | 	 i. In particular, |Ap | 	 p. However, there are only p
numbers mod p. So |Ap | � p and Ap � �0, 1,�, p � 1�. Thus 0 � Ap. However, from the recurrsive
definition of the sets A i, it follows that Ap � B1 � B2 � � � Bp mod p. So 0 � b1 � b2 � � � bn mod p for
some bi � B i. Let T � �b1, b2,�, bn�. Then T is a subcollection of S with n elements and
�T � 0 mod p. �

14. Theorem: If k is a positive integer 	 2, then P�k, 2k � 1� is true.

Proof: We apply strong mathematical induction. First for the initialization step, we know P�2, 3� is
true by problem 1. For the induction step, we assume P�k, 2k � 1� is true for all k � K and prove
P�K, 2K � 1�. If K is prime, then P�K, 2K � 1� is true by Theorem 13. If K is not prime, then K � rs for
some r � K and s � K. Then P�K, 2K � 1� is true by Theorem 11. So P�k, 2k � 1� is true for all k.
�

15. Corollary: If n 	 2k � 1, then P�k, n� is true.

Proof: By Theorem 14 and Lemma 9, P�k, n� is true. �
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