Solutions 2015 AB Exam

Texas A\&M High School Math Contest

October 24, 2015

1. For how many integers n in the set $\{1,2,3, \ldots, 150\}$ is $n^{3}-n^{2}$ the square of an integer?

ANSWER: 13

Solution: $n^{3}-n^{2}=n^{2}(n-1)$, so $n-1$ needs to be the square of an integer. For $1 \leq n \leq 150$ we obtain $0^{2}=1-1$
$1^{2}=2-1$
$2^{2}=5-1$
:
$12^{2}=145-1$.
So 13 in all.
2. If $\frac{1}{x}+\frac{1}{y}=5$ and $\frac{1}{x}-\frac{1}{y}=1$, find $x+y$.

ANSWER: $\frac{5}{6}$

Solution:

$\frac{1}{x}+\frac{1}{y}=5$
$\frac{1}{x}-\frac{1}{y}=1$, adding gives
$\frac{2}{x}=6$ and $x=\frac{1}{3}$
Substitution gives
$3+\frac{1}{y}=5$
$\frac{1}{y}=2$ and $y=\frac{1}{2}$
$x+y=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}$
3. Daisy has a bag containing 6 distinct objects. She draws one object and replaces it. She does this four times. What is the probability that she draws the same object exactly three times.

ANSWER: $\frac{5}{54}$

Solution: There are 6^{4} possible outcomes. We need to count the number of outcomes having the same object exactly three times. There are 6 distinct objects, and the number of ways that object A can be picked three times is $\binom{4}{3} \cdot 5=4 \cdot 5=20$. So the probability is $\frac{6 \cdot(4 \cdot 5)}{6^{4}}=\frac{20}{6^{3}}=\frac{4 \cdot 5}{4 \cdot 9 \cdot 6}=\frac{5}{54}$
4. The sum of the first ten terms of a nonzero geometric series is 244 times the sum of the first five terms. What is the common ratio of this series?

ANSWER: 3

Solution:
$a+a r+\ldots+a r^{9}=\left(a+a r+a r^{2}+a r^{3}+a r^{4}\right)\left(1+r^{5}\right)=244\left(a+a r+a r^{2}+a r^{3}+a r^{4}\right)$
]5pt] Thus, $1+r^{5}=244$ or $r^{4}=243$.
Hence $r=3$.
5. Write 2015 in the base 5 numeration system.

ANSWER: 31030

Solution:
$5^{1}=5$

$$
2015=3(625)+140
$$

$5^{2}=25$
$140=1(125)+15$
$5^{3}=125$
$15=3(5)$
$5^{4}=625$
So, $2015_{10}=31030_{5}$
6. How many members of the set $\left\{\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \ldots, \frac{100}{7}\right\}$ are integer multiples of $\frac{2}{5}$?

ANSWER: 7

Solution: Suppose $\frac{K}{7}$ is an integer multiple of $\frac{2}{5}$. Then $\frac{K}{7}=n \frac{2}{5}$ for some integer n.

$$
5 K=14 n
$$

So 14 divides $5 K$ and since it is relatively prime to 5,14 divides K. Moreover, $100=7 \times 14+2$. Thus, there are 7 integers between 1 and 100 divisible by 14 .
7. If f is a function such that $f(1)=1$ and $f(n)=f(n-1)+2 n-1$ for all $n \geq 2$, find $f(100)$.

ANSWER: 10, 000

Solution:

$$
\begin{aligned}
f(100) & =f(99)+2(100)-1 \\
= & f(98)+2(99)-1+2(100)-1 \\
= & f(98)+2(99+100)-2 \\
= & f(97)+2(98)-1+2(99+100)-2 \\
= & f(97)+2(98+99+100)-3 \\
& \vdots \\
= & f(1)+2(2+3+\ldots+99+100)-99 \\
= & 1+2\left(\frac{(100)(101)}{2}-1\right)-99 \\
= & (100)(101)-100 \\
= & 10100-100 \\
= & 10000
\end{aligned}
$$

8. Find the value of the number A such that the three solutions to $x^{3}-8 x^{2}+A x-12=0$ are positive integers.

ANSWER: 19

Solution: Let α, β, γ be the three positive integer solutions to $x^{3}-8 x^{2}+A x-12=0$. Then $\alpha \beta \gamma=12$ and $\alpha+\beta+\gamma=8$. By inspection the three solutions are $\{1,3,4\}$. So

$$
\begin{aligned}
A & =\alpha \beta+\beta \gamma+\alpha \gamma \\
& =3+12+4=19
\end{aligned}
$$

9. Let $P(x)$ be a monic polynomial of degree 3. (So the coefficient of x^{3} is 1.) Suppose that the remainder when $P(x)$ is divided by $x^{2}-5 x+6$ equals 2 times the remainder when $P(x)$ is divided by $x^{2}-5 x+4$. If $P(0)=100$, find $P(5)$.

ANSWER: 110

Solution: We are given

$$
\begin{aligned}
P(x) & =\left(x^{2}-5 x+6\right)\left(x+C_{1}\right)+2(A x+B) \\
& =\left(x^{2}-5 x+4\right)\left(x+C_{2}\right)+A x+B
\end{aligned}
$$

where C_{1}, C_{2}, A, B are constants.

$$
P(0)=6 C_{1}+2 B=4 C_{2}+B=100 .
$$

So

$$
\begin{aligned}
P(5)=6\left(5+C_{1}\right)+10 A+2 B & =30+6 C_{1}+2 B+10 A \\
& =30+100+10 A \\
& =130+10 A
\end{aligned}
$$

and

$$
\begin{aligned}
P(5)=4\left(5+C_{2}\right)+5 A+B & =20+4 C_{2}+B+5 A \\
& =20+100+5 A \\
& =120+5 A .
\end{aligned}
$$

Hence

$$
130+10 A=120+5 A \Longrightarrow 5 A=-10 \Longrightarrow A=-2
$$

Thus, $P(5)=120-10=110$.
10. How many positive integers less than 1400 have no repeating digits, i.e. no digit occurs more than once. (For example 103 is such an integer, but 131 is not.)

ANSWER: 906

Solution:
(a) Every single digit (positive) integer is allowed. There are 9 of these.
(b) Two digits: $9 \times 9=81$
(c) Three digits: $9 \times 9 \times 8=648$
(d) Four digits: $1 \times 3 \times 8 \times 7=168$

Adding gives
$9+81+648+168=906$
11. Find all possible ordered pairs (A, B) of digits such that the integer $7 A 8 B$ is divisible by 45 .

ANSWER: $(3,0),(7,5)$
Solution: Since $7 A 8 B$ is divisible by $45=9 \cdot 5$ it is divisible by 5 and $B \in\{0,5\}$. If $B=0$ then $7+A+8+0$ must be divisible by 9 so $A=3$.
If $B=5$ then $7+A+8+5$ must be divisible by 9 , i.e. $A=7$. So

$$
(A, B) \in\{(3,0),(7,5)\}
$$

12. Among all real numbers x and y such that $|x+y|+|x-y|=10$, what is the largest value of $x^{2}+y^{2}-8 y ?$

ANSWER: 90
Solution: The graph of $|x+y|+|x-y|=10$ is the square with vertices $(\pm 5, \pm 5)$. We have $x^{2}+y^{2}-8 y=x^{2}+y^{2}-8 y+16-16=x^{2}+(y-4)^{2}-16$. So the maximum value occurs when x^{2} and $(y-4)^{2}$ are maximal. This occurs (on the square) when $x=5$ and $y=-5$. The maximum value is

$$
\begin{aligned}
5^{2}+(-9)^{2}-16 & =25+81-16 \\
& =106-16=\underline{90}
\end{aligned}
$$

13. How many ways can one list $1,2,3,4$ so that no integer is followed by its successor, i.e. $n, n+1$ never occurs? For example $2,1,4,3$ is one such listing but $2,1,3,4$ is not (4 is the successor of 3).

ANSWER: 11.

Solution: 1 can only be followed by 3 or 4,2 by 1 or 4,3 by 1 or 2,4 by 1,2 , or 3 . The possible lists, of which there are 11, follow:

$$
\begin{array}{lll}
1324, & 1432 & \\
2143, & 2413, & 2431 \\
3142, & 3214, & 3241 \\
4132, & 4213, & 4321
\end{array}
$$

14. Exactly one of the five integers listed below is a prime. Which one is the prime number?
(a) 999,991
(b) 999,973
(c) 999,983
(d) $1,000,001$
(e) $7,999,973$

ANSWER: (c) or 999, 983

Solution: A difference of two squares and the sum or difference of two cubes always factors.

$$
\begin{aligned}
999,991 & =1,000,000-9=1000^{2}-3^{2} \\
999,973 & =100^{3}-3^{3} \\
1,000,001 & =100^{3}+1^{3} \\
7,999,973 & =200^{3}-3^{3}
\end{aligned}
$$

So 999,983 is the prime.
15. The set of integers $\{1,2, \ldots, 20\}$ is divided into k disjoint subsets $S_{1}, S_{2}, \ldots, S_{k}$ such that no two different integers whose sum is divisible by 5 are in the same subset. For example 7 and 8 are not in the same subset since 5 divides $7+8$. What is the least possible value of k ?

ANSWER: 4

Solution: The integers $5,10,15,20$ must each be in a different subset. So $k \geq 4$. In fact, $k=4$ using

$$
\begin{aligned}
& S_{1}=\{1,2,5,6,7,11,12,16,17\} \\
& S_{2}=\{3,4,8,9,10,13,14,18,19\} \\
& S_{3}=\{15\} \\
& S_{4}=\{20\}
\end{aligned}
$$

16. A number system with base 26 uses as its symbols for digits $A=0, B=1, C=2, \ldots, Y=24, Z=25$. Express $P+Q$ in this system.

ANSWER: $B F$

Solution: $P=15, Q=16$. In base ten $P+Q$ is $15+16=31=1 \cdot 26^{1}+5 \cdot 26^{0}$ which is $B F$.
17. How many ordered pairs (x, y) of integers satisfy $x^{2}+6 x+y^{2}=16$?

ANSWER: 12

Solution:

$$
x^{2}+6 x+y^{2}=16 \Longrightarrow(x+3)^{2}+y^{2}=25
$$

So 25 is the sum of two squares. The possible solutions of $z^{2}+w^{2}=25$ are:

$$
\begin{aligned}
& (0,5),(0,-5),(5,0),(-5,0) \\
& (3,4),(3,-4),(-3,4),(-3,-4) \\
& (4,3),(4,-3),(-4,3),(-4,-3) .
\end{aligned}
$$

Each of these solutions leads to a distinct solution of $x^{2}+6 x+y^{2}=16$.
18. Recall that if S is a set then $|S|$ denotes the number of elements in S. Now let $S=$ $\{1,2,3,4,5,6\}$. How many different nonempty subsets T of S do not contain $|T|$? For example $T=\{3,5\}$ is one such subset since $|T|=2$ is not in T.

ANSWER: 31

Solution: The number of subsets of size 1 that do not contain 1 is $\binom{5}{1}$. The number of subsets of size 2 that do not contain 2 is $\binom{5}{2}$. The number of subsets of size k that do not contain k is $\binom{5}{k}$. So we have

$$
\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}=2^{5}-1=32-1=31
$$

19. Find all positive integers n of the form $n=p^{2} q$ with p and q distinct primes and such that the sum of the reciprocals of all of the divisors of n is 2 .

ANSWER: 28

Solution: The divisors of n are $1, p, p^{2}, q, p q, p q^{2}$ and we want

$$
\frac{1}{1}+\frac{1}{p}+\frac{1}{p^{2}}+\frac{1}{q}+\frac{1}{p q}+\frac{1}{p^{2} q}=2
$$

i.e.

$$
\begin{gathered}
p^{2} q+p q+q+p^{2}+p+1=2 p^{2} q \\
(q+1)\left(p^{2}+p+1\right)=2 p^{2} q .
\end{gathered}
$$

Note that $p^{2}+p+1$ is odd and must divide $p^{2} q$. Hence $p^{2}+p+1=p, p^{2}, p q, p^{2} q$ or q. Since p does not divide $p^{2}+p+1$ then the only possibility is $p^{2}+p+1=q$. This equation implies p divides $q-1$. But

$$
(q+1)\left(p^{2}+p+1\right)=(q+1) q=2 p^{2} q
$$

so $q+1=2 p^{2}$. Hence p divides $q+1$. Since p divides both $q-1$ and $q+1$ then $p=2$. Also $q=p^{2}+p+1=4+2+1=7$ and $n=4 \cdot 7=28$.
20. In Dr. Stecher's special topics class, 20% of the students are juniors and 80% are seniors. On a recent test the average score for the entire class was 85 and the average score for the seniors was 88 . What was the average score for the juniors?

ANSWER: 73

Solution: We may assume there are 20 juniors with scores A_{1}, \ldots, A_{20} and 80 seniors with scores B_{1}, \ldots, B_{80}. We have

$$
\frac{B_{1}+\ldots+B_{80}}{80}=88, \text { so } B_{1}+\ldots+B_{80}=(88)(80)
$$

and

$$
\frac{A_{1}+\ldots+A_{20}+B_{1}+\cdots+B_{80}}{100}=85
$$

so

$$
\begin{aligned}
A_{1}+\ldots+A_{20} & =(85)(100)-\left(B_{1}+\ldots+B_{80}\right)=85(100)-88(80) \\
\frac{A_{1}+\ldots+A_{20}}{20} & =\frac{85(100)-88(80)}{20} \\
& =\frac{(85)(10)-88(8)}{2}=85(5)-88(4)=73
\end{aligned}
$$

21. Let f_{1} be the function defined by $f_{1}(x)=1-\frac{1}{x}$. Let f_{2} be defined by $f_{2}(x)=f_{1}\left(f_{1}(x)\right)$. Let f_{3} be defined by $f_{3}(x)=f_{1}\left(f_{2}(x)\right)$. Continue in this fashion to define the sequence of functions $f_{1}, f_{2}, \ldots, f_{n}, \ldots$. Find the value of $f_{50}(50)$.

ANSWER: $-\frac{1}{49}$
Solution:

$$
\begin{aligned}
& f_{1}(50)=1-\frac{1}{50}=\frac{49}{50} \\
& f_{2}(50)=f_{1}\left(\frac{49}{50}\right)=1-\frac{50}{49}=-\frac{1}{49} \\
& f_{3}(50)=f_{1}\left(-\frac{1}{49}\right)=1-\frac{1}{-\frac{1}{49}}=50
\end{aligned}
$$

From here on the values repeat: $f_{4}(50)=f_{1}(50)=\frac{49}{50}$ etc. So

$$
f_{50}(50) \in\left\{\frac{49}{50},-\frac{1}{49}, 50\right\} .
$$

Since $50=48+2=3(16)+2$ then

$$
f_{50}(50)=f_{2}(50)=-\frac{1}{49} .
$$

