CD EXAM
 Texas A\&M High School Math Contest Oct 24, 2015

1. Consider an equilateral triangle $A B C$ with sides of length 1 . Extend $A B$ from A to A^{\prime} so that A lies between A^{\prime} and B, and the distance from A^{\prime} to A is x. Similarly extend $A C$ to C^{\prime} and $C B$ to B^{\prime}. Triangle $A^{\prime} B^{\prime} C^{\prime}$ will also be equilateral. Find the smallest positive integer value for x so that the sides of $A^{\prime} B^{\prime} C^{\prime}$ have integer lengths.
2. Find

$$
\sqrt{2^{1}+\sqrt{2^{2}+\sqrt{2^{4}+\sqrt{2^{8}+\cdots}}}}
$$

and give the answer in the form $(a+\sqrt{b}) / \sqrt{c}$ where a, b, and c are positive integers.
3. Find the pair of positive integers a and b with smallest sum such that for all positive integers k,

$$
10^{2(a k+b)}+10^{a k+b}+9
$$

is divisible by 7 .
4. A half circle of radius 1 has two half circles inscribed along its base, each of radius $1 / 2$. These have further half-circles inscribed, the pattern continuing to all depths.

What is the sum of the areas of the black-colored portions?
5. A dartboard of radius r has zones bounded by circles of radius $r / 4, r / 2$, and $3 r / 4$, by the x and y axes, and by the lines $y= \pm x$. What is the farthest distance between two points in a single zone?
6. A polynomial $p(z)$ is called suitable if it has the form

$$
\begin{aligned}
p(z) & =\left(z-w_{1}\right)\left(z-w_{2}\right)\left(z-w_{3}\right)\left(z-w_{4}\right) \\
& =\left(z-u_{1}-i v_{1}\right)\left(z-u_{2}-i v_{2}\right)\left(z-u_{3}-i v_{3}\right)\left(z-u_{4}-i v_{4}\right)
\end{aligned}
$$

where each of the u_{j} 's and v_{j} 's is an integer. Find a suitable polynomial $p(z)$ such that $p(0)=4, p(1)=5$, and for all z,

$$
\left(z^{2}+2 z+2\right) p(z-2)=\left(z^{2}-6 z+10\right) p(z) .
$$

7. For which values of c does the system of equations

$$
x y=2 / c, \quad x^{2}+y^{2}=c
$$

have four distinct real solutions?
8. A man has $\$ 1.70$ in nickles, dimes, and quarters. He lists how many of each he has, producing a list of the form (n, d, q). (It might read $(4,0,6)$, say, or $(2,1,6)$, or $(0,17,0)$.) How many possibilities are there for this list?
9. A three dimensional chess board has 512 cubical 'squares'. A queen, on this board, can move in any direction a regular queen could move, in any of the three 8 by 8 planes that include here square. She can also move along any of the long diagonals through her position. What is the maximum number of squares such a queen can get to in one move from any particular position on the board?
10. Find $\left(\log _{2} 3\right)\left(\log _{9} 16\right)$.
11. Find the sum of the coordinates of all integer points strictly inside the triangle with vertices $(0,0),(20,8)$, and $(21,9)$.
12. An equilateral triangle with vertices $(-1,0,0),(0,1,0)$, and $(0,0, \sqrt{3})$ is rotated around the z axis, forming a cone. A sphere is inscribed in the cone, tangent at a point on the $x-y$ plane and tangent to the curved surface of the cone along a circle. A plane parallel to the $x-y$ plane is also tangent to the sphere at its top. This cuts off a little cone at the top of the big cone. Find the ratio of the volume of the little cone to the volume of the big cone.
13. Given that $x^{2}-y^{2}=2$ and $x^{3}-y^{3}=3$, find $x+y-(x y /(x+y))$.
14. Let

$$
S=\sum_{k=1}^{2015} \frac{1}{k(k+1)(k+2)}=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots+\frac{1}{2015 \cdot 2016 \cdot 2017}
$$

The decimal expansion of S has the form a.bcdefghijkl \cdots. Find a, b, c, and d.
15. Find the largest integer k such that 2^{k} divides $100!/(50!)^{2}$.
16. Find all ordered triples of integers (a, b, c) so that $|a+b|+|b+c|=1$ and $|a+b|+|a+c|=3$.
17. Find the least prime p that divides $10^{\left(10^{10}\right)}+10^{10}+10-1$.

