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Answers should include units when appropriate.

1. Let t1 and t2 be the times from start till the boats meet for the first and the second time, respectively.
If w is the width of the river, and v is the sum of speeds of the boats, then vt1 = w and vt2 = 3w, hence
t2 = 3t1. One ferry traveled distance 700 feet at time t1, and at time t2 it traveled w + 400 = 3 · 700 feet.
Therefore, w = 3 · 700− 400 = 1700 feet.

2. Let a, b, and c be productivities of the workers (job per hour). Then the statements of the problem are:

1

a+ b+ c
=

1

a
− 6 =

1

b
− 1 =

1

2c
,

and we are asked to find 1
a+b .

We have from 1
a+b+c = 1

2c that a+ b = c. We get then

a+ b

a
− 6(a+ b) =

1

2
;

a+ b

b
− (a+ b) =

1

2
,

or

1 +
b

a
− 6c =

1

2
; 1 +

a

b
− c =

1

2
.

Writing a
b and b

a in terms of c, and using a
b · b

a = 1, we get

(

6c− 1

2

)(

c− 1

2

)

= 1,

which leads to the quadratic equation

6c2 − 7

2
c− 3

4
= 0.

Its roots are
7
2±

√
49/4+18

12 =
7
2±

√
121/4

12 = 7±11
24 . Discarding the negative root, we get c = 3/4, hence

1
a+b = 1

c = 4/3 hours = 80 minutes.

3. We can rewrite
√
n−

√
n− 1 = n−(n−1)√

n+
√
n−1

= 1√
n+

√
n−1

, hence we are asked to find the smallest integer n

such that
√
n+

√
n− 1 > 100. If

√
n+

√
n− 1 > 100, then 2

√
n > 100, hence n > 2500. If we take n = 2501,

then
√
n+

√
n− 1 > 2

√
n− 1 = 100. Therefore, the answer is n = 2501.

4. We have |x + y| ≤ |x| + |y|, hence the sum is less than 3. On the other hand, two of the numbers, say
x and y, are of the same sign. Then |x + y| = |x| + |y|, and one of the summands is equal to 1. Hence,
the sum S satisfies 1 ≤ S ≤ 3. If we set x = 1, y = 1, z = −a, where 0 < a ≤ 1, then the expression is
equal to 1 + 2 1−a

1+a . The function 1−a
1+a takes all values in the interval [0, 1) when 0 < a ≤ 1. Therefore, our

original expression takes all values in the interval [1, 3) for x = y = 1, z = −a. The value 3 is attained for
x = y = z = 1. It follows that the set of possible values of the expression is the closed interval [1, 3].

5. From the second equation y − 2xy = 0 we get y(1 − 2x) = 0, hence y = 0 or x = 1/2. If y = 0, then
the first equation becomes x = x2, which has solutions x = 0 or x = 1. If x = 1/2, then the first equation
is 1/2 = 1/4 + y2, hence y2 = 1/4, which has solutions y = 1/2 or y = −1/2. Therefore the answer is
(x, y) = (0, 0), (1, 0), (1/2, 1/2), or (1/2,−1/2).

6. Since 0 ≤ x < π, sinx is positive, and we can write the first equation as

√

1− cos2 x+ cosx =
1

5
,

or
1

5
− cosx =

√

1− cos2 x.

1



Taking square of both sides, we get

1

25
− 2

5
cosx+ cos2 x = 1− cos2 x,

or

2 cos2 x− 2

5
cosx− 24

25
= 0.

Solving it as a quadratic equation for cosx, we get

cosx =

2
5 ±

√

4
25 + 8·24

25

4
=

2
5 ± 2

5

√
1 + 48

4
=

1± 7

10
,

hence cosx = 4/5 or cosx = −3/5. Then sinx =
√
1− cos2 x is either

√

1− 16/25 = 3/5 or
√

1− 9/25 =
4/5, respectively. It follows that tanx = 3/4 or tanx = −4/3.

7. Let P be the intersection point of AC and BD. Since P is on the circle and AB is a diameter, ∠APB = 90◦.
It follows that ∠DBA = 90◦ − ∠CAB = ∠ACB, hence △DAB is similar to △ABC. Then DA : AB =
AB : BC, hence AB2 = ab, so that the diameter of the circle is

√
ab.

8. Let us assume that a ≤ b. The case b ≤ a will be similar. If −a ≤ x ≤ a, then −b ≤ x ≤ b, and
|x− a|+ |x+ a| = 2a, |x− b|+ |x+ b| = 2b, hence for m = 2 solutions are all numbers −a ≤ x ≤ a.

If a ≤ x ≤ b, then |x− b|+ |x+ b| = 2b, and |x− a|+ |x+ a| = x+ a+ x− a = 2x, so that the equation
becomes 2x + 2b = m(a + b), which has solution x = m

2 a + m−2
2 b. It must satisfy a ≤ x ≤ b, which is

equivalent to 2a+ 2b ≤ 2x+ 2b ≤ 4b, which is equivalent to 2(a+ b) ≤ m(a+ b) ≤ 4b, i.e., 2 ≤ m ≤ 4b
a+b .

If x ≥ b, then |x − a| + |x + a| = 2x and |x − b|+ |x + b| = 2x, so that we get x = m(a+b)
4 , which must

satisfy m(a+b)
4 ≥ b, which is equivalent to m ≥ 4b

a+b .
The cases −b ≤ x ≤ −a and x ≤ −b are reduced to the previous cases by replacing x by −x in the

equation.
It follows that the set of values for which the equation has a solution is [2,+∞).

9. We have cos 2α = 2 cos2 α− 1, hence cos2 α = 1+m
2 , and sin2 α = 1− 1+m

2 = 1−m
2 .

Using the identity x3 + y3 = (x + y)(x2 − xy + y2), we get sin6 α + cos6 α = (cos2 α + sin2 α)(cos4 α −
cos2 α sin2 α+sin4 α) = cos4 α−cos2 α sin2 α+sin4 α = (1+m)2

4 − 1−m2

4 + (1−m)2

4 = 1+2m+m2−1+m2+1−2m+m2

4 =
3m2+1

4 .

10. The remainder is a polynomial of the form ax+ b satisfying

x2015 = P (x)(x2 − 3x+ 2) + (ax+ b)

for some polynomial P (x). The polynomial x2 − 3x+ 2 has roots 1 and 2, therefore

1 = a+ b, 22015 = 2a+ b

Subtracting the first equation from the second, we get a = 22015 − 1. Then, from the first equation we get
b = 2− 22015. Therefore, the answer is (22015 − 1)x+ (2− 22015).

11. We have logy x = 1
log

x
y . Denoting logx y = t, we get from the first equation of the system

1

t
+ t = 5/2,

2



hence

t2 − 5

2
t+ 1 = 0,

which has solutions

t =

5
2 ±

√

25
4 − 4

2
=

5
2 ± 3

2

2
,

hence t = 2 or t = 1/2. If t = 2, then log xy = 2, i.e., y = x2. If t = 1/2, then x = y2. In the first case the
second equation gives x3 = 27, in the second case we get y3 = 27. Hence, the answer is (x, y) = (3, 9) or
(9, 3).

12. We have 3
√
0.5 + 3

√
4 = 1

3√2
+ 3

√
4 = 1+2

3√2
= 3

3√2
. The equation becomes

3x

2x/3
=

27

2
.

It is easy to see that x = 3 is a solution. It is unique, since the function
(

3/ 3
√
4
)x

is increasing.

13. Let us replace sin(xy) by another variable a. The quadratic equation x2 + 2ax + 1 = 0 in x has
discriminant D = 4a2 − 4. Since x has to be real, D ≥ 0. But −1 ≤ a ≤ 1, so a = ±1. Hence, we have two
cases:

{

sin(xy) = 1
x2 + 2x+ 1 = 0

and
{

sin(xy) = −1
x2 − 2x+ 1 = 0

In the first case we get x = −1 and y = −π/2 + 2kπ, k ∈ Z. In the second case we get x = 1 and
y = −π/2 + 2kπ, k ∈ Z.

14. Let A1, B1, and C1 be the feet of the perpendiculars from the center O of the circle to the lines AC,
CB, and AB, respectively. Then OA1CB1 is a square. Denote the radius by r. Then BB1 = r − 1/2,
AA1 = r−

√
3/2. We have BB1 = BC1 and AA1 = AC1. Hence, (r− 1/2)+ (r−

√
3/2) = 1. It follows that

r = 3+
√
3

4 .

15. Since B and D are right angles, we can circumscribe a circle around ABCD, and AC will be its diameter.
Let O be the center of the circle, and r its radius. Then ∠DOB = 120◦, since ∠DCB = 60◦. Using the law
of cosines, we get

DB2 = 462 + 132 + 2 · 46 · 13 · 1
2
= 2116 + 169 + 598 = 2883 = 3 · 961 = 3 · 312.

In the triangle DOB we have OD = OB = r, DB = 31
√
3, ∠DOB = 120◦. It follows that DB = 2 · r ·

√
3
2 =

31
√
3, hence r = 31, and AC = 62.
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16. In other words, we are asked to solve the system

{

cx3 − x2 − x− (c+ 1) = 0
cx2 − x− (c+ 1) = 0

We have cx3 − x2 = x+ c+1 = cx2, hence x2(cx− 1− c) = 0. It follows that either x = 0, or cx− 1− c = 0.
In the first case we get c+1 = 0, hence c = −1. In the second case we have c 6= 0, and x = 1+c

c . Substituting
x = 1+c

c into the equations, we see that both of them are satisfied. It follows that the polynomials have a
common root for all c 6= 0. Note that for c = 0 the polynomials are −x2 − x − 1 and −x− 1, so they have
no common roots. Answer: all c 6= 0.

17. We have sin 3x = sinx cos 2x + sinx cos 2x = sinx cos 2x + 2 sinx cos2 2x. Therefore, the equation is
equivalent to

sinx(cos 2x+ 2 cos2 x− 2) = 0.

If sinx = 0 and 0 ≤ x < 2π, then x = 0 or π. If sinx 6= 0, then

cos 2x+ 2 cos2 x− 2 = 0

which can be written
2 cos2 x− 1 + 2 cos2 x− 2 = 0,

or 4 cos2 x = 3, hence cos2 x = 3/4, or cosx = ±
√
3/2, which gives solutions x = 0, π6 ,

5π
6 , π, 7π

6 , 11π
6 .

18. The segment AD is the bisector of the angle BAE in triangle BAE. It is known (a corollary of the law
of sines) that AB : AE = BD : DE. Denote AB = x, AD = y. Then AE = 3x/2. Similarly, using the fact
that AE is the bisector of the angle DAC, we get AD : AC = DE : EC, hence AC = 2y. Let us denote
cos∠BAD = c. Then, by the law of cosines, we get







x2 + y2 − 2xya = 4
9
4x

2 + y2 − 3xya = 9
9
4x

2 + 4y2 − 6xya = 36

Subtract the first equation from the second:

5

4
x2 − xya = 5, xya =

5

4
x2 − 5.

Subtract the second equation from the third:

3y2 − 3xya = 27, xya = y2 − 9.

We get y2−9 = 5
4x

2−5, hence y2 = 5
4x

2+4. Substituting this and xya = 5
4x

2−5 into the first equation,
we get

x2 +
5

4
x2 + 4− 5

2
x2 + 10 = 4,

4



1

4
x2 = 10

x =
√
40.

19. Let DD1 be the bisector of the angle D, where D1 is a point on the segment AB. Then ∠AD1D =
∠D1DC = ∠ADD1, hence △DAD1 is isosceles, so that AD1 = a. The line DD1 is parallel to BC, hence
DD1BC is a parallelogram, so that D1B = DC = b. We conclude that AB = a+ b.

20. We have f(n) + f(1) = f(n + 1) − n − 1, hence f(n + 1) = f(n) + n + 2. It follows f(2) = 1 + 3,

f(3) = 1+ 3+ 4, f(4) = 1+ 3+ 4+ 5, e.t.c., f(n) = 1+ 3+ 4+ 5+ · · ·+ n+ 1 = (n+1)(n+2)
2 − 2 = n2+3n−2

2 .
Note that (replacing n by n − 1) we get f(n − 1) = f(n) − n − 1, which gives a proof by induction for

the formula f(n) = n2+3n−2
2 also for negative n.

We have to solve
n2 + 3n− 2

2
= n,

n2 + 3n− 2 = 2n

n2 + n− 2 = 0.

Roots are n = 1,−2.

21. The condition implies that the polynomial (x+1)P (x)−x has roots 0, 1, 2, . . . , n. Since (x+1)P (x)−x
has degree n+ 1, it follows that (x+ 1)P (x)− x = cx(x− 1)(x− 2) · · · (x− n) for some non-zero number c.

Consequently, P (x) = cx(x−1)(x−2)···(x−n)+x
x+1 . Since P (x) is a polynomial, −1 must be a root of the numerator

cx(x−1)(x−2) · · · (x−n)+x. It follows that c(−1)(−2)(−3) · · · (−n−1)−1 = 0, hence c = (−1)n+1/(n+1)!,

and P (x) =
(−1)n+1

(n+1)!
x(x−1)(x−2)···(x−n)+x

x+1 . We get P (n+ 1) =
(−1)n+1

(n+1)!
(n+1)n(n−1)···1+(n+1)

n+2 = (−1)n+1+n+1
n+2 . In

other words, P (n+ 1) = n
n+2 if n is even, and P (n+ 1) = 1 if n is odd.
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