DE Exam, Solutions
 Texas A\&M High School Math Contest
 October 24, 2015

Answers should include units when appropriate.

1. Let t_{1} and t_{2} be the times from start till the boats meet for the first and the second time, respectively. If w is the width of the river, and v is the sum of speeds of the boats, then $v t_{1}=w$ and $v t_{2}=3 w$, hence $t_{2}=3 t_{1}$. One ferry traveled distance 700 feet at time t_{1}, and at time t_{2} it traveled $w+400=3 \cdot 700$ feet. Therefore, $w=3 \cdot 700-400=1700$ feet.
2. Let a, b, and c be productivities of the workers (job per hour). Then the statements of the problem are:

$$
\frac{1}{a+b+c}=\frac{1}{a}-6=\frac{1}{b}-1=\frac{1}{2 c}
$$

and we are asked to find $\frac{1}{a+b}$.
We have from $\frac{1}{a+b+c}=\frac{1}{2 c}$ that $a+b=c$. We get then

$$
\frac{a+b}{a}-6(a+b)=\frac{1}{2} ; \quad \frac{a+b}{b}-(a+b)=\frac{1}{2}
$$

or

$$
1+\frac{b}{a}-6 c=\frac{1}{2} ; \quad 1+\frac{a}{b}-c=\frac{1}{2}
$$

Writing $\frac{a}{b}$ and $\frac{b}{a}$ in terms of c, and using $\frac{a}{b} \cdot \frac{b}{a}=1$, we get

$$
\left(6 c-\frac{1}{2}\right)\left(c-\frac{1}{2}\right)=1
$$

which leads to the quadratic equation

$$
6 c^{2}-\frac{7}{2} c-\frac{3}{4}=0
$$

Its roots are $\frac{\frac{7}{2} \pm \sqrt{49 / 4+18}}{12}=\frac{\frac{7}{2} \pm \sqrt{121 / 4}}{12}=\frac{7 \pm 11}{24}$. Discarding the negative root, we get $c=3 / 4$, hence $\frac{1}{a+b}=\frac{1}{c}=4 / 3$ hours $=80$ minutes.
3. We can rewrite $\sqrt{n}-\sqrt{n-1}=\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}$, hence we are asked to find the smallest integer n such that $\sqrt{n}+\sqrt{n-1}>100$. If $\sqrt{n}+\sqrt{n-1}>100$, then $2 \sqrt{n}>100$, hence $n>2500$. If we take $n=2501$, then $\sqrt{n}+\sqrt{n-1}>2 \sqrt{n-1}=100$. Therefore, the answer is $n=2501$.
4. We have $|x+y| \leq|x|+|y|$, hence the sum is less than 3 . On the other hand, two of the numbers, say x and y, are of the same sign. Then $|x+y|=|x|+|y|$, and one of the summands is equal to 1 . Hence, the sum S satisfies $1 \leq S \leq 3$. If we set $x=1, y=1, z=-a$, where $0<a \leq 1$, then the expression is equal to $1+2 \frac{1-a}{1+a}$. The function $\frac{1-a}{1+a}$ takes all values in the interval $[0,1)$ when $0<a \leq 1$. Therefore, our original expression takes all values in the interval $[1,3)$ for $x=y=1, z=-a$. The value 3 is attained for $x=y=z=1$. It follows that the set of possible values of the expression is the closed interval $[1,3]$.
5. From the second equation $y-2 x y=0$ we get $y(1-2 x)=0$, hence $y=0$ or $x=1 / 2$. If $y=0$, then the first equation becomes $x=x^{2}$, which has solutions $x=0$ or $x=1$. If $x=1 / 2$, then the first equation is $1 / 2=1 / 4+y^{2}$, hence $y^{2}=1 / 4$, which has solutions $y=1 / 2$ or $y=-1 / 2$. Therefore the answer is $(x, y)=(0,0),(1,0),(1 / 2,1 / 2)$, or $(1 / 2,-1 / 2)$.
6. Since $0 \leq x<\pi, \sin x$ is positive, and we can write the first equation as

$$
\sqrt{1-\cos ^{2} x}+\cos x=\frac{1}{5}
$$

or

$$
\frac{1}{5}-\cos x=\sqrt{1-\cos ^{2} x}
$$

Taking square of both sides, we get

$$
\frac{1}{25}-\frac{2}{5} \cos x+\cos ^{2} x=1-\cos ^{2} x
$$

or

$$
2 \cos ^{2} x-\frac{2}{5} \cos x-\frac{24}{25}=0
$$

Solving it as a quadratic equation for $\cos x$, we get

$$
\cos x=\frac{\frac{2}{5} \pm \sqrt{\frac{4}{25}+\frac{8 \cdot 24}{25}}}{4}=\frac{\frac{2}{5} \pm \frac{2}{5} \sqrt{1+48}}{4}=\frac{1 \pm 7}{10}
$$

hence $\cos x=4 / 5$ or $\cos x=-3 / 5$. Then $\sin x=\sqrt{1-\cos ^{2} x}$ is either $\sqrt{1-16 / 25}=3 / 5$ or $\sqrt{1-9 / 25}=$ $4 / 5$, respectively. It follows that $\tan x=3 / 4$ or $\tan x=-4 / 3$.
7. Let P be the intersection point of $A C$ and $B D$. Since P is on the circle and $A B$ is a diameter, $\angle A P B=90^{\circ}$. It follows that $\angle D B A=90^{\circ}-\angle C A B=\angle A C B$, hence $\triangle D A B$ is similar to $\triangle A B C$. Then $D A: A B=$ $A B: B C$, hence $A B^{2}=a b$, so that the diameter of the circle is $\sqrt{a b}$.

8. Let us assume that $a \leq b$. The case $b \leq a$ will be similar. If $-a \leq x \leq a$, then $-b \leq x \leq b$, and $|x-a|+|x+a|=2 a,|x-b|+|x+b|=2 b$, hence for $m=2$ solutions are all numbers $-a \leq x \leq a$.

If $a \leq x \leq b$, then $|x-b|+|x+b|=2 b$, and $|x-a|+|x+a|=x+a+x-a=2 x$, so that the equation becomes $2 x+2 b=m(a+b)$, which has solution $x=\frac{m}{2} a+\frac{m-2}{2} b$. It must satisfy $a \leq x \leq b$, which is equivalent to $2 a+2 b \leq 2 x+2 b \leq 4 b$, which is equivalent to $2(a+b) \leq m(a+b) \leq 4 b$, i.e., $2 \leq m \leq \frac{4 b}{a+b}$.

If $x \geq b$, then $|x-a|+|x+a|=2 x$ and $|x-b|+|x+b|=2 x$, so that we get $x=\frac{m(a+b)}{4}$, which must satisfy $\frac{m(a+b)}{4} \geq b$, which is equivalent to $m \geq \frac{4 b}{a+b}$.

The cases $-b \leq x \leq-a$ and $x \leq-b$ are reduced to the previous cases by replacing x by $-x$ in the equation.

It follows that the set of values for which the equation has a solution is $[2,+\infty)$.
9. We have $\cos 2 \alpha=2 \cos ^{2} \alpha-1$, hence $\cos ^{2} \alpha=\frac{1+m}{2}$, and $\sin ^{2} \alpha=1-\frac{1+m}{2}=\frac{1-m}{2}$.

Using the identity $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$, we get $\sin ^{6} \alpha+\cos ^{6} \alpha=\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)\left(\cos ^{4} \alpha-\right.$ $\left.\cos ^{2} \alpha \sin ^{2} \alpha+\sin ^{4} \alpha\right)=\cos ^{4} \alpha-\cos ^{2} \alpha \sin ^{2} \alpha+\sin ^{4} \alpha=\frac{(1+m)^{2}}{4}-\frac{1-m^{2}}{4}+\frac{(1-m)^{2}}{4}=\frac{1+2 m+m^{2}-1+m^{2}+1-2 m+m^{2}}{4}=$ $\frac{3 m^{2}+1}{4}$.
10. The remainder is a polynomial of the form $a x+b$ satisfying

$$
x^{2015}=P(x)\left(x^{2}-3 x+2\right)+(a x+b)
$$

for some polynomial $P(x)$. The polynomial $x^{2}-3 x+2$ has roots 1 and 2 , therefore

$$
1=a+b, \quad 2^{2015}=2 a+b
$$

Subtracting the first equation from the second, we get $a=2^{2015}-1$. Then, from the first equation we get $b=2-2^{2015}$. Therefore, the answer is $\left(2^{2015}-1\right) x+\left(2-2^{2015}\right)$.
11. We have $\log _{y} x=\frac{1}{\log _{x} y}$. Denoting $\log _{x} y=t$, we get from the first equation of the system

$$
\frac{1}{t}+t=5 / 2
$$

hence

$$
t^{2}-\frac{5}{2} t+1=0
$$

which has solutions

$$
t=\frac{\frac{5}{2} \pm \sqrt{\frac{25}{4}-4}}{2}=\frac{\frac{5}{2} \pm \frac{3}{2}}{2}
$$

hence $t=2$ or $t=1 / 2$. If $t=2$, then $\log x y=2$, i.e., $y=x^{2}$. If $t=1 / 2$, then $x=y^{2}$. In the first case the second equation gives $x^{3}=27$, in the second case we get $y^{3}=27$. Hence, the answer is $(x, y)=(3,9)$ or $(9,3)$.
12. We have $\sqrt[3]{0.5}+\sqrt[3]{4}=\frac{1}{\sqrt[3]{2}}+\sqrt[3]{4}=\frac{1+2}{\sqrt[3]{2}}=\frac{3}{\sqrt[3]{2}}$. The equation becomes

$$
\frac{3^{x}}{2^{x / 3}}=\frac{27}{2}
$$

It is easy to see that $x=3$ is a solution. It is unique, since the function $(3 / \sqrt[3]{4})^{x}$ is increasing.
13. Let us replace $\sin (x y)$ by another variable a. The quadratic equation $x^{2}+2 a x+1=0$ in x has discriminant $D=4 a^{2}-4$. Since x has to be real, $D \geq 0$. But $-1 \leq a \leq 1$, so $a= \pm 1$. Hence, we have two cases:

$$
\left\{\begin{aligned}
\sin (x y) & =1 \\
x^{2}+2 x+1 & =0
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
\sin (x y) & =-1 \\
x^{2}-2 x+1 & =0
\end{aligned}\right.
$$

In the first case we get $x=-1$ and $y=-\pi / 2+2 k \pi, k \in \mathbb{Z}$. In the second case we get $x=1$ and $y=-\pi / 2+2 k \pi, k \in \mathbb{Z}$.
14. Let A_{1}, B_{1}, and C_{1} be the feet of the perpendiculars from the center O of the circle to the lines $A C$, $C B$, and $A B$, respectively. Then $O A_{1} C B_{1}$ is a square. Denote the radius by r. Then $B B_{1}=r-1 / 2$, $A A_{1}=r-\sqrt{3} / 2$. We have $B B_{1}=B C_{1}$ and $A A_{1}=A C_{1}$. Hence, $(r-1 / 2)+(r-\sqrt{3} / 2)=1$. It follows that $r=\frac{3+\sqrt{3}}{4}$.

15. Since B and D are right angles, we can circumscribe a circle around $A B C D$, and $A C$ will be its diameter. Let O be the center of the circle, and r its radius. Then $\angle D O B=120^{\circ}$, since $\angle D C B=60^{\circ}$. Using the law of cosines, we get

$$
D B^{2}=46^{2}+13^{2}+2 \cdot 46 \cdot 13 \cdot \frac{1}{2}=2116+169+598=2883=3 \cdot 961=3 \cdot 31^{2}
$$

In the triangle $D O B$ we have $O D=O B=r, D B=31 \sqrt{3}, \angle D O B=120^{\circ}$. It follows that $D B=2 \cdot r \cdot \frac{\sqrt{3}}{2}=$ $31 \sqrt{3}$, hence $r=31$, and $A C=62$.

16. In other words, we are asked to solve the system

$$
\left\{\begin{aligned}
c x^{3}-x^{2}-x-(c+1) & =0 \\
c x^{2}-x-(c+1) & =0
\end{aligned}\right.
$$

We have $c x^{3}-x^{2}=x+c+1=c x^{2}$, hence $x^{2}(c x-1-c)=0$. It follows that either $x=0$, or $c x-1-c=0$. In the first case we get $c+1=0$, hence $c=-1$. In the second case we have $c \neq 0$, and $x=\frac{1+c}{c}$. Substituting $x=\frac{1+c}{c}$ into the equations, we see that both of them are satisfied. It follows that the polynomials have a common root for all $c \neq 0$. Note that for $c=0$ the polynomials are $-x^{2}-x-1$ and $-x-1$, so they have no common roots. Answer: all $c \neq 0$.
17. We have $\sin 3 x=\sin x \cos 2 x+\sin x \cos 2 x=\sin x \cos 2 x+2 \sin x \cos ^{2} 2 x$. Therefore, the equation is equivalent to

$$
\sin x\left(\cos 2 x+2 \cos ^{2} x-2\right)=0
$$

If $\sin x=0$ and $0 \leq x<2 \pi$, then $x=0$ or π. If $\sin x \neq 0$, then

$$
\cos 2 x+2 \cos ^{2} x-2=0
$$

which can be written

$$
2 \cos ^{2} x-1+2 \cos ^{2} x-2=0
$$

or $4 \cos ^{2} x=3$, hence $\cos ^{2} x=3 / 4$, or $\cos x= \pm \sqrt{3} / 2$, which gives solutions $x=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}$.
18. The segment $A D$ is the bisector of the angle $B A E$ in triangle $B A E$. It is known (a corollary of the law of sines) that $A B: A E=B D: D E$. Denote $A B=x, A D=y$. Then $A E=3 x / 2$. Similarly, using the fact that $A E$ is the bisector of the angle $D A C$, we get $A D: A C=D E: E C$, hence $A C=2 y$. Let us denote $\cos \angle B A D=c$. Then, by the law of cosines, we get

$$
\left\{\begin{aligned}
x^{2}+y^{2}-2 x y a & =4 \\
\frac{9}{4} x^{2}+y^{2}-3 x y a & =9 \\
\frac{9}{4} x^{2}+4 y^{2}-6 x y a & =36
\end{aligned}\right.
$$

Subtract the first equation from the second:

$$
\frac{5}{4} x^{2}-x y a=5, \quad x y a=\frac{5}{4} x^{2}-5
$$

Subtract the second equation from the third:

$$
3 y^{2}-3 x y a=27, \quad x y a=y^{2}-9
$$

We get $y^{2}-9=\frac{5}{4} x^{2}-5$, hence $y^{2}=\frac{5}{4} x^{2}+4$. Substituting this and $x y a=\frac{5}{4} x^{2}-5$ into the first equation, we get

$$
x^{2}+\frac{5}{4} x^{2}+4-\frac{5}{2} x^{2}+10=4
$$

$$
\begin{aligned}
& \frac{1}{4} x^{2}=10 \\
& x=\sqrt{40}
\end{aligned}
$$

19. Let $D D_{1}$ be the bisector of the angle D, where D_{1} is a point on the segment $A B$. Then $\angle A D_{1} D=$ $\angle D_{1} D C=\angle A D D_{1}$, hence $\triangle D A D_{1}$ is isosceles, so that $A D_{1}=a$. The line $D D_{1}$ is parallel to $B C$, hence $D D_{1} B C$ is a parallelogram, so that $D_{1} B=D C=b$. We conclude that $A B=a+b$.

20. We have $f(n)+f(1)=f(n+1)-n-1$, hence $f(n+1)=f(n)+n+2$. It follows $f(2)=1+3$, $f(3)=1+3+4, f(4)=1+3+4+5$, e.t.c., $f(n)=1+3+4+5+\cdots+n+1=\frac{(n+1)(n+2)}{2}-2=\frac{n^{2}+3 n-2}{2}$.

Note that (replacing n by $n-1$) we get $f(n-1)=f(n)-n-1$, which gives a proof by induction for the formula $f(n)=\frac{n^{2}+3 n-2}{2}$ also for negative n.

We have to solve

$$
\begin{aligned}
\frac{n^{2}+3 n-2}{2} & =n \\
n^{2}+3 n-2 & =2 n \\
n^{2}+n-2 & =0
\end{aligned}
$$

Roots are $n=1,-2$.
21. The condition implies that the polynomial $(x+1) P(x)-x$ has roots $0,1,2, \ldots, n$. Since $(x+1) P(x)-x$ has degree $n+1$, it follows that $(x+1) P(x)-x=c x(x-1)(x-2) \cdots(x-n)$ for some non-zero number c. Consequently, $P(x)=\frac{c x(x-1)(x-2) \cdots(x-n)+x}{x+1}$. Since $P(x)$ is a polynomial, -1 must be a root of the numerator $c x(x-1)(x-2) \cdots(x-n)+x$. It follows that $c(-1)(-2)(-3) \cdots(-n-1)-1=0$, hence $c=(-1)^{n+1} /(n+1)!$, and $P(x)=\frac{\frac{(-1)^{n+1}}{(n+1)!} x(x-1)(x-2) \cdots(x-n)+x}{x+1}$. We get $P(n+1)=\frac{\frac{(-1)^{n+1}}{(n+1)!}(n+1) n(n-1) \cdots 1+(n+1)}{n+2}=\frac{(-1)^{n+1}+n+1}{n+2}$. In other words, $P(n+1)=\frac{n}{n+2}$ if n is even, and $P(n+1)=1$ if n is odd.

