Solutions to EF Exam

Texas A\&M High School Math Contest
24 October, 2015

1. Create a tree diagram with the $\underset{\text { winner }}{\text { possibilities: }}$

$P(A$ wins $)=3 / 5 * 0.55=0.33 ; P(B$ wins $)=1 / 5 * 0.55+1 / 5 * 0.55+1 / 5 * 0.45=0.31$; $P(C$ wins $)=3 / 5 * 0.45+1 / 5 * 0.45=0.36$, so the most likely winner is \mathbf{C}.
2. Let d_{1} be the distance the first freshman had traveled and d_{2} be the distance the second freshman had traveled when they met. If x is the speed of the first and y the speed of the second, we have $\frac{d_{1}}{x}=4 \frac{1}{12}=\frac{49}{12}$ and $\frac{d_{2}}{y}=2 \frac{1}{12}=\frac{25}{12}$, for a total distance of $\frac{49 x+25 y}{12}$. Since they arrived at the same time, $\frac{49+25 \frac{y}{x}}{12}=\frac{49 \frac{x}{y}+25}{12}+2$. Multiplying by 12 and simplifying we obtain $\frac{25 y}{x}=\frac{49 x}{y}$, so $y=\frac{7}{5} x$ and the first freshman's total time is $\frac{49+35}{12}=7$ hours. 7:00pm
3. Factoring the left hand side yields $(x(x-8)(x+8))(x(x+8))(9(x-8))=9 x^{2}(x-8)^{2}(x+8)^{2}$, which is always greater than or equal to $0 .(-\infty, \infty)$
4. The fraction is equivalent to $\frac{(76.56)(84.91)-(76.56)(35.72)}{(49.19)(0.634)+(0.566)(49.19)}=\frac{(76.56)(49.19)}{(49.19)(1.2)}=\frac{76.56}{1.2}=\mathbf{6 3 . 8}$.
5. From the figure below, one diagonal of the rhombus is also a radius of the circle, thus forming 2 equilateral triangles, each of whose area is $\frac{(10)^{2} \sqrt{3}}{4}=25 \sqrt{3}$. Therefore, the area of the rhombus is $50 \sqrt{3}$.

6. Let x be the lengths of the sides of $\triangle P Q R$ and s be the lengths of the sides of $\triangle A B C$. Draw altitude $\overline{A D} \perp \overline{B C}$. Then $\triangle A D C \sim \triangle Q P C$, meaning $P C=\frac{x}{\sqrt{3}}$. Likewise, draw altitude $\overline{C E} \perp \overline{A B}$. Then $\triangle C E B \sim \triangle P R B$, meaning $B P=\frac{2 x}{\sqrt{3}}$. Therefore, $s=\frac{x}{\sqrt{3}}+\frac{2 x}{\sqrt{3}}=\sqrt{3} x$, so the ratio of the areas is $\frac{x^{2}}{s^{2}}=\frac{\mathbf{1}}{\mathbf{3}}$.
7. Let a and $a+5$ be the roots. Then $a+(a+5)=-\frac{m}{3}$ and $a(a+5)=-4$. From the second equation, $a=-4$ or $a=-1$, meaning $m= \pm 9$, so the product is $-\mathbf{8 1}$.
8. Multiply both equations by $\frac{1}{3}$ and add the results, giving us $x-y-z=5$.
9. $\frac{1-\tan \left(\frac{\pi}{12}\right)}{1+\tan \left(\frac{\pi}{12}\right)}=\frac{\tan \left(\frac{\pi}{4}\right)-\tan \left(\frac{\pi}{12}\right)}{1+\tan \left(\frac{\pi}{4}\right) \tan \left(\frac{\pi}{12}\right)}=\tan \left(\frac{\pi}{4}-\frac{\pi}{12}\right)=\tan \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{3}$.
10. $a^{2} e^{-a x}-b^{2} e^{-b x}=b^{2} e^{-b x}\left(\left(\frac{a}{b}\right)^{2} e^{-(a-b) x}-1\right)$. Substituting x in the parentheses yields $b^{2} e^{-b x}\left(\left(\frac{a}{b}\right)^{2} e^{-2(\ln a-\ln b)}-\right.$ $b^{2} e^{-b x}\left(\left(\frac{a}{b}\right)^{2}\left(\frac{a}{b}\right)^{-2}-1\right)=\mathbf{0}$.
11. Differentiate with respect to t to obtain $\frac{d y}{d t}=(2 x+2) \frac{d x}{d t}$. We want $\frac{d y}{d t}=\frac{d x}{d t}$, so $\frac{d x}{d t}=(2 x+2) \frac{d x}{d t}$ or $0=(2 x+1) \frac{d x}{d t}$. Therefore, $x=-\frac{1}{2}$, meaning $y=-\frac{3}{4} .\left(-\frac{\mathbf{1}}{\mathbf{2}},-\frac{\mathbf{3}}{\mathbf{4}}\right)$.
12. Draw a coordinate system with the origin at point B and label as shown below, such that $\angle B=\angle C=2 \theta$ and point P has coordinates (x, y) :

From $\triangle C N P, \tan (2 \theta)=\frac{y}{1-x}$, and from $\triangle B N P, \tan (\theta)=\frac{y}{x}$. Applying the double-angle tangent formula yields $\frac{y}{1-x}=\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}=\frac{2\left(\frac{y}{x}\right)}{1-\left(\frac{y}{x}\right)^{2}}=\frac{2 x y}{x^{2}-y^{2}}$. Since $y \neq 0$, cancel and cross-multiply to obtain $x^{2}-y^{2}=2 x-2 x^{2}$, or $y^{2}=3 x^{2}-2 x$. As $A M \rightarrow 0, P N=y \rightarrow 0$, so we must have $x(3 x-2) \rightarrow 0$. This occurs when $x \rightarrow 0$ (not possible since by construction x must be $\geq \frac{1}{2}$ or $x \rightarrow \frac{2}{3}$. So $B P \rightarrow \frac{2}{3}$.
(Alternately, since the angle bisector of a triangle divides the opposite side proportionally to the adjacent sides of the triangle, we have $\frac{A B}{B C}=\frac{A P}{P C}$. As point A approaches point $M, \frac{A B}{B C} \rightarrow \frac{1}{2}$, meaning $\frac{A P}{P C} \rightarrow \frac{1}{2}$ So $B P \rightarrow \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{2}=\frac{\mathbf{2}}{\mathbf{3}}$.)
13. For $t \leq 0, f(t)=3 t+3$, so $g(-2)=\int_{0}^{-2}(3 t+2) d t=-\int_{-2}^{0}(3 t+2) d t=-\left.\left(\frac{3}{2} t^{2}+2 t\right)\right|_{-2} ^{0}$ $=-(0-2)=2 \cdot g^{\prime}(-2)=f(-2)-1=-4$, and $g^{\prime \prime}(-2)$ represents the slope of the line, which is 3 . So the product is $\mathbf{- 2 4}$.
14. We want $\lim _{x \rightarrow \infty} \ln \left(\left(\frac{x+a}{x-a}\right)^{x}\right)=1$. $\lim _{x \rightarrow \infty} \ln \left(\left(\frac{x+a}{x-a}\right)^{x}\right)=\lim _{x \rightarrow a} \frac{\ln (x+a)-\ln (x-a)}{\frac{1}{x}}$. Apply L'Hospital's Rule to obtain $\lim _{x \rightarrow \infty} \frac{\frac{1}{x+a}-\frac{1}{x-a}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{2 a x^{2}}{x^{2}-a^{2}}=2 a$. Hence, $2 a=1$, and $a=\frac{\mathbf{1}}{\mathbf{2}}$. (Alternately, we know $\left(\frac{x+a}{x-a}\right)^{x}=\left(1+\frac{2 a}{x-a}\right)^{x}=\left(1+\frac{2 a}{x-a}\right)^{\left(\frac{x-a}{2 a}\right)^{\left(\frac{2 a x}{x-a}\right)}}$ which approaches $e^{2 a}$ and hence leads to our desired result.)
15. Let $u=\sqrt{x}$. Then $d u=\frac{1}{2 \sqrt{x}} d x=\frac{1}{2 u} d x$. Substituting and changing the boundaries yields $\int_{0}^{\pi / 2} 2 u \cos (u) d u$. Integrate by Parts to obtain $2 u \sin (u)+\left.2 \cos (u)\right|_{0} ^{\pi / 2}=\pi-\mathbf{2}$
16. The point travels in circular arcs from $(2,1)$ to $(3,0)$ to $(5,2)$ to $(9,2)$ and finally to $(12,1)$ as shown below:

The area consists of two 2×2 right triangles of area 2 , two 1×2 right triangles of area 1 , and four quarter-circles of radii $1,2, \sqrt{8}$, and $\sqrt{5}$ respectively. Therefore, the area is $6+$ $\frac{1}{4}(\pi+4 \pi+8 \pi+5 \pi)=\mathbf{6}+\frac{\mathbf{9} \pi}{\mathbf{2}}$.
17. Differentiate $f^{(n-1)}(x)=\frac{P_{n-1}(x)}{\left(x^{2015}-1\right)^{n}}$ to obtain
$f^{(n)}(x)=\frac{\left(x^{2015}-1\right)^{n} P_{n-1}^{\prime}(x)-P_{n-1}(x)(n)\left(x^{2015}-1\right)^{n-1}\left(2015 x^{2014}\right)}{\left(x^{2015}-1\right)^{2 n}}$
$=\frac{\left(x^{2015}-1\right) P_{n-1}^{\prime}(x)-2015 P_{n-1}(x) n x^{2014}}{\left(x^{2014}-1\right)^{n+1}}$. Then $P_{n}(x)=\left(x^{2015}-1\right) P_{n-1}^{\prime}(x)-2015 P_{n-1}(x) n x^{2014}$
and $P_{n}(1)=0-2015 n P_{n-1}(1)$. Since $\frac{d}{d x}\left(\frac{1}{\left(x^{2015}-1\right)}\right)=\frac{-2015 x^{2014}}{\left(x^{2015}-1\right)^{2}}$, it can be shown inductively that, if $\frac{d^{n}}{d x^{n}}\left(\frac{1}{x^{2015}-1}\right)=\frac{P_{n}(x)}{\left(x^{2015}-1\right)^{n+1}}$, that $P_{n}(x)=(-2015)^{n} n$! Therefore, the 2015th derivative is $(-2015)^{\mathbf{2 0 1 5}}(\mathbf{2 0 1 5})$!
18. Differentiate both sides of the equation to obtain $2 f(x) f^{\prime}(x)=(f(x))^{2}+\left(f^{\prime}(x)\right)^{2}$. This is true for all x provided $\left(f(x)-f^{\prime}(x)\right)^{2}=0$, or $f(x)=f^{\prime}(x)$, meaning $f(x)=A e^{x}$. To find a value of A which satisfies the original equation for all x, note that when $x=0,(f(0))^{2}=A^{2}=0+2015$, or $A= \pm \sqrt{2015}$. Since $f(x)>0$ for all $x, \mathbf{f}(\mathbf{x})=\sqrt{2015} \mathbf{e}^{\mathbf{x}}$.
19. Let $u=6-x$. Then $u+6=12-x$ and $12-u=x+6$. Let I be the value of the original integral. Substituting and changing boundaries yields $I=\int_{1}^{5} \frac{(12-u) \sin (u+6)}{(12-u) \sin (u+6)+(u+6) \sin (12-u)} d u$. Therefore, $2 I=\int_{1}^{5} \frac{(x+6) \sin (12-x)+(12-x) \sin (x+6)}{(12-x) \sin (x+6)+(x+6) \sin (12-x)} d x=\int_{1}^{5} 1 d x=4$, so $I=\mathbf{2}$.

