BC Exam

Texas A\&M High School Math Contest
October 22, 2016
All answers must be simplified, and if units are involved, be sure to include them.

1. Given

$$
A=\frac{1}{2-\sqrt{3}}
$$

and

$$
B=(\sqrt{5}-\sqrt{2} \sqrt{\sqrt{3}})(\sqrt{5}+\sqrt{2} \sqrt{\sqrt{3}})
$$

find $2 A+B$ simplifying as much as possible.
2. Let x and y be the solutions of the system of equations

$$
\sqrt{39-2 x-10 y}=5
$$

and

$$
\sqrt{15-2 x+2 y}=5 .
$$

Find $x+y$.
3. A collection of nickels and dimes has a total value of $\$ 2.40$ and contains 35 coins. How many nickels are in the collection?
4. A box containing 180 cubic inches is constructed by cutting from each corner of a cardboard square a small square with side 5 inches, and then turning up the sides. Find the area of the original piece of cardboard.
5. Find the largest common divisor for the numbers

$$
11^{100}+11^{101}+11^{102}+11^{103}
$$

and

$$
7^{100}+7^{101}+7^{102}+7^{103}
$$

6. Find the sum of all solutions of the equation

$$
x^{2}+6 x+\sqrt{x^{2}+6 x}=20 .
$$

7. Suppose that $\triangle A B C$ is a right triangle with $\angle A=90^{\circ}, A B=5$, and $A C=12$. On the line $A B$ we consider the point M such that $\triangle B M C$ is isosceles with $B M=C M$. Find $A M$.
8. Mr. Kaye is 11 times as old as his daughter Lynn. Thirty-six years from now he will be at most twice as old as Lynn. At most, how old is Lynn?
9. In the $\triangle A B C, A B=A C$ and $\angle A=120^{\circ}$. The median $A D$ to the side $B C$ is extended through the point D with the segment $D M=3 A D$. Find $\angle D M B$.
10. In the figure below $A B$ is tangent to the circle. If $A B=8$ and $A C$ exceeds $A D$ by 12 , what is $A C$?

11. Find the sum of all positive integers x for which $x+56$ and $x+113$ are perfect squares.
12. Consider the sum

$$
S=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}+\sqrt{n+1}},
$$

where n is a positive integer. If $S=10$, what is the value of n ?
13. Find the product of all solutions of the equation

$$
\left(3 x^{2}-4 x+1\right)^{3}+\left(x^{2}+4 x-5\right)^{3}=64\left(x^{2}-1\right)^{3} .
$$

14. A circle whose center is on the x-axis passes through the points $(3,5)$ and $(6,4)$. Find the radius of the circle.
15. Find the sum of all integers N with the property that $N^{2}-71$ is divisible by $7 N+55$.
16. In the $\triangle A B C, B D$ is the median to the side $A C, D G$ is parallel to the base $B C$ (G is the point of intersection of the parallel with $A B$). In the $\triangle A B D, A E$ is the median to the side $B D$ and F is the intersection point of $D G$ and $A E$. Find $\frac{B C}{F G}$.
17. The function

$$
f(x)=x^{2}+(x+2)^{2}+\cdots(x+98)^{2}-\left[(x+1)^{2}+(x+3)^{2}+\cdots(x+99)^{2}\right]
$$

is a linear function, $f(x)=a x+b$. Find $a-b$.
18. In the isosceles $\triangle A B C$ with $A B=A C$, let $A M$ be the median to the side $B C$ and let $B D$ be the altitude to the side $A C$. If $\angle A M D=4 \angle B D M$ find $\angle A C B$.
19. Let f and g be two linear functions such that

$$
f(x-1)=2 x-3+g(1)-f(1)
$$

and

$$
g(x-1)=4 x+5-g(1)-f(1),
$$

for all real numbers x. Find $g(5)$.
20. Consider $\triangle A B C$ with $\angle B=\angle C=70^{\circ}$. On the sides $A B$ and $A C$ we take the points F and E, respectively, so that $\angle A B E=15^{\circ}$ and $\angle A C F=30^{\circ}$. Find $\angle A E F$.

