Solutions to Best Student Exam

Texas A\&M High School Math Contest

22 October, 2016

1. The prime factors of 20 ! are $2,3,5,7,11,13,17$, and 19 , so $A=77$. Likewise, the prime factors of $16!$ are $2,3,5,7,11$, and 13 , so $B=41$. Therefore, $A+B=118$.
2. At 5 pm , the angle between the minute and hour hand is $\frac{5}{12}\left(360^{\circ}\right)=150^{\circ}$. Each minute, the minute hand moves 6° clockwise, but the hour hand moves $\left(\frac{1}{60}\right)\left(\frac{1}{12}\right)\left(360^{\circ}\right)=\frac{1}{2}^{\circ}$ clockwise, so the hands move $5 \frac{1}{2}^{\circ}$ closer together. After m minutes, the hands are at an angle of $150-\frac{11}{2} m$. We want $150-\frac{11}{2} m=90$, or $m=\frac{120}{11} \approx 11$ minutes, so the time is about $5: \mathbf{1 1} \mathbf{p m}$.
3. Remove one inch from the length, then divide the remaining block into one $15 \times 5 \times 7 \frac{1}{2}$ inch block, which can be cut into $153 \times 5 \times 2 \frac{1}{2}$ inch pieces, and one $15 \times 3 \times 7 \frac{1}{2}$ inch block, which can be cut into $95 \times 3 \times 2 \frac{1}{2}$ inch pieces. This gives us a total of $\mathbf{2 4}$ pieces.
4. Let N be the number of coins each pirate receives at the end, meaning there are $3 N$ coins in the chest. Working backwards, the third pirate discovers $\frac{3}{2} N+\frac{3}{2} N+\left(\frac{3}{2} N+1\right)=\frac{9}{2} N+1$ coins in the chest. The second pirate discovers $\left(\frac{9}{4} N+\frac{1}{2}\right)+\left(\frac{9}{4} N+\frac{1}{2}\right)+\left(\frac{9}{4} N+\frac{1}{2}+1\right)=\frac{27}{4} N+\frac{5}{2}$ coins, and the first pirate discovers $\left(\frac{27}{8} N+\frac{5}{4}\right)+\left(\frac{27}{8} N+\frac{5}{4}\right)+\left(\frac{27}{8} N+\frac{5}{4}+1\right)=\frac{81}{8} N+\frac{19}{4}$ coins. Since the number of coins must be a whole number, N must be even, so the smallest possible value is $N=2$, leaving 25 coins originally in the chest.
5. Note that the middle barrel is not used in any of the sides, so we place 9 there. The remaining barrels add up to 36 , but note that the barrels on the vertices are added along two sides. We place 0 (the unmarked barrel), 1, and 2 along these sides, giving us a total of 39 , divided equally among three sides with a sum of $\mathbf{1 3}$.
6. It can be shown that the nth line segment adds $n+1$ triangles to the existing ones (if D_{n} is the point of intersection with the segment and $\overline{A C}$, then triangles $B A D_{n}, B C D_{n}$, and $B D_{i} D_{n}$, for all $i<n$, are formed). Therefore, there are a total of $1+2+3+\cdots+2016+2017$ triangles from 2016 line segments. The sum is equal to $\frac{(2017)(2018)}{2}=(2017)(1009)=\mathbf{2}, \mathbf{0 3 5}, \mathbf{1 5 3}$ triangles.
7. Note that $F K=A N$. Select points P, R, S, and T on segments $\overline{B C}, \overline{C D}, \overline{D E}$, and $\overline{E F}$ such that $F K=A N=B P=C R=D S=E T$. (see figure below) Then $\angle K B N=\angle T A K, \angle K C N=$ $\angle S A T, \angle K D N=\angle R A S, \angle K E N=\angle P A R$, and $\angle K F N=\angle N A P$. Therefore, $\angle K A N+$ $\angle K B N+\angle K C N+\angle K D N+\angle K E N+\angle K F N=\angle K A N+\angle T A K+\angle S A T+\angle R A S+$ $\angle P A R+\angle N A P=\angle K A N+\angle K A N=120^{\circ}+120^{\circ}=\mathbf{2 4 0}^{\circ}$.

8. Note that square of an integer is either 0 or 1 modulo 4 . It follows that the only way the sum of three squares integers is divisible by 4 is that all three of them are divisible by 2 . Consequently, if $(2 n)^{2}=a^{2}+b^{2}+c^{2}$ for integers n, a, b, c, then $n^{2}=(a / 2)^{2}+(b / 2)^{2}+(c / 2)^{2}$ and $a / 2, b / 2, c / 2$ are integers. We have $2016=32 \cdot 63$, so if $2016^{2}=a^{2}+b^{2}+c^{2}$ for positive integers a, b, c, then $63^{2}=(a / 32)^{2}+(b / 32)^{2}+(c / 32)^{2}$ and $a / 32, b / 32, c / 32$ are integers. Denote $a_{1}=a / 32, b_{1}=b / 32$, $c_{1}=c / 32$. We want to find all triples of positive integers a_{1}, b_{1}, c_{1} such that $a_{1}^{2}+b_{1}^{2}+c_{1}^{2}=63^{2}$. If we know that $a_{1} \geq b_{1} \geq c_{1}$, then a_{1} is more than $\sqrt{63^{2} / 3}$ and not more than 63 , so it is between 37 and 63 . We consider all these cases. In each of the cases there is an interval of possible values of b_{1}, and computing for each of them c_{1}, we get all possible triples:

38	37	34
43	38	26
46	37	22
48	33	24
48	39	12
49	28	28
50	37	10
50	38	5
53	26	22
53	34	2
54	27	18
56	28	7
57	24	12
58	22	11
59	22	2
60	15	12
62	11	2

To get the values of a, b, c, one has to multiply these numbers by 32 . In particular, the smallest possible value of c is 64 , but many other values are possible: $1088,896,832,768,704,576,384$, $352,320,224,160,64$.
9. The problem is equivalent to finding five numbers which, when one or more are added and/or subtracted (weights placed with the salt), yield any number up to 121. Proceed inductively as follows: start with a 1-ounce weight. Double and add one for a 3-ounce weight, allowing us to combine for up to 4 ounces $(1,3-1,3,3+1)$. Double this and add one again for a 9 -ounce weight, allowing us to combine for up to 13 ounces (append $9-4,9-3, \cdots, 9,9+1, \cdots 9+4$ to the previous list). Double this total and add one again for a 27 -ounce weight, allowing us to combine for up to 40 ounces using the previous strategy. Double this total and add one again for an 81-ounce weight, allowing us to combine for up to 121 ounces. Mathematically, we can prove by induction that $2\left(\sum_{i=0}^{n} 3^{i}\right)+1=3^{n+1}$. So our heaviest weight is $\mathbf{8 1}$ ounces.
10. $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{20}{1-\tan \alpha \tan \beta}$. From the second given equation, $\frac{1}{\tan \alpha}+\frac{1}{\tan \beta}=$ $\frac{\tan \beta+\tan \alpha}{\tan \alpha \tan \beta}=16$, so $\tan \alpha \tan \beta=\frac{20}{16}=\frac{5}{4}$. Therefore, $\tan (\alpha+\beta)=\frac{20}{1-\frac{5}{4}}=-\mathbf{8 0}$.
11. Let x be the number of cows, y be the number of sheep, and z be the number of rabbits. Then

$$
\begin{gathered}
x+y+z=100 \\
500 x+100 y+5 z=10000
\end{gathered}
$$

Eliminate z to obtain $495 x+95 y=9500$. Since $95 y$ and 9500 are both multiples of $19,495 x$ must also be a nonzero multiple of 19 , meaning x is a nonzero multiple of 19 . However, $x<20$ because of the second equation above, so $x=\mathbf{1 9}$ cows.
12. Factor and apply properties of logarithms:

$$
2 \log _{5 x+9}(x+3)+\log _{x+3}(5 x+9)+\log _{x+3}(x+3)=4
$$

Let $t=\log _{5 x+9}(x+3)$. From the change-of-base formula, $\log _{x+3}(5 x+9)=\frac{1}{t}$, so our equation becomes $2 t+\frac{1}{t}+1=4$, or $2 t^{2}-3 t+1=0$. Then $(2 t-1)(t-1)=0$, so $t=\frac{1}{2}$ or $t=1$. Substitute back to obtain

$$
\begin{array}{cc}
\log _{5 x+9}(x+3)=\frac{1}{2} & \log _{5 x+9}(x+3)=1 \\
x+3=\sqrt{5 x+9} & x+3=5 x+9 \\
x^{2}+6 x+9=5 x+9 & -4 x=6 \\
x^{2}+x=0 & x=-\frac{3}{2} \\
x=-1 \text { or } x=0 &
\end{array}
$$

All three test as valid solutions; therefore, the smallest solution is $x=-\frac{\mathbf{3}}{\mathbf{2}}$.
13. The water is in the shape of a cylinder with diameter 20 cm and height 16 cm containing a cylindrical "hole" with diameter 10 cm and height 8 cm . Therefore, the volume of water is $\pi\left(10^{2}\right)(16)-\pi\left(5^{2}\right)(8)=1600 \pi-200 \pi=1400 \pi \mathrm{~cm}^{3}$. Let h be the original height of the water. Then $\pi\left(10^{2}\right) h=1400 \pi$, or $h=\mathbf{1 4} \mathbf{c m}$.
14. There are 24 different four-digit numbers possible, and each digit appears in each place value six times. If the original digits are a, b, c, and d, then $S=6000(a+b+c+d)+600(a+b+c+$ $d)+60(a+b+c+d)+6(a+b+c+d)=(a+b+c+d)(6666)=(a+b+c+d)(2)(3)(11)(101)$. Therefore, the largest prime factor of S (regardless of the original digits) is 101.
15. The function can be written as $f(x)=2 x+(x-1)^{-1}+(x+1)^{-1}$, so $f^{(n)}(x)=(-1)^{n}(n!)\left((x-1)^{-(n+1)}+(x+1)^{-(n+1)}\right)$. Therefore, $f^{(2016)}(2)=2016!\left(1+3^{-2017}\right)=2016!\left(1+\frac{1}{3^{2017}}\right)$.
16. Using properties of logarithms, $a_{n}=2 \ln (n)-\ln (n-1)-\ln (n+1)$. Then the sum of the numbers can be written as:

$$
\begin{gathered}
2 \ln (2)-\ln (1)-\ln (3) \\
+2 \ln (3)-\ln (2)-\ln (4) \\
+2 \ln (4)-\ln (3)-\ln (5) \\
+2 \ln (5)-\ln (4)-\ln (6)
\end{gathered}
$$

With cancellations, the sum after writing k lines is just $\ln (2)+\ln (k+1)-\ln (k+2)=\ln (2)+$ $\ln \left(\frac{k+1}{k+2}\right)$. As k gets larger, this last term becomes very close to $\ln (1)=0$, so the sum of an infinite number of these is simply $\ln (\mathbf{2})$.
17. With some rearranging, we find that

$$
\begin{gathered}
(x+y)\left(x^{2}-x y+y^{2}\right)+3 x y-1=0 \\
(x+y)\left(x^{2}-x y+y^{2}\right)-\left(x^{2}-x y+y^{2}\right)+\left(x^{2}+2 x y+y^{2}-1\right)=0 \\
(x+y-1)\left(x^{2}-x y+y^{2}\right)+(x+y-1)(x+y+1)=0 \\
(x+y-1)\left(x^{2}-x y+y^{2}+x+y+1\right)=0
\end{gathered}
$$

So our equation reduces down to $x+y-1=0$ or $x^{2}-x y+y^{2}+x+y+1=0$. But the second equation can be further rearranged to

$$
\begin{gathered}
\frac{1}{2} x^{2}-x y+\frac{1}{2} y^{2}+\frac{1}{2} x^{2}+x+\frac{1}{2}+\frac{1}{2} y^{2}+y+\frac{1}{2}=0 \\
\frac{1}{2}\left((x-y)^{2}+(x+1)^{2}+(y+1)^{2}\right)=0
\end{gathered}
$$

Which is only true at $(-1,-1)$. Therefore, our "curve" is simply this point along with the line $x+y=1$. To form a triangle, we must include the point $(-1,-1)$. The height h of our triangle is the distance from $(-1,-1)$ to $\left(\frac{1}{2}, \frac{1}{2}\right)$, which is $\frac{3 \sqrt{2}}{2}$. Then the length s of a side of our triangle is $\frac{2}{\sqrt{3}} h=\sqrt{6}$. Therefore, our area is $\frac{\sqrt{6}^{2} \sqrt{3}}{4}=\frac{\mathbf{3} \sqrt{\mathbf{3}}}{\mathbf{2}}$.

