DE EXAM
 Texas A\&M High School Math Contest November 2016

1. Find the length of an edge of an equilateral triangle that has one corner at $(0,0)$ and the other two on the graph of $x y=1$. Simplify fully.
2. In quotient and remainder division of one positive integer p by another, d, the quotient q is the largest integer q such that $q d \leq p$, and the remainder is $p-q d$. Thus, for instance, the remainder when dividing 22 by 5 is 2 , and the quotient is 4 .
Find the smallest positive integer n so that when n is divided by 3 , the remainder is 1 , when n is divided by 5 , the remainder is 2 , when n is divided by 7 , the remainder is 3 , and when n is divided by 11 , the remainder is 4 .
3. Multiplying $\left(1+x+x^{2}+\cdots+x^{9}\right)^{10}$ gives an expression

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{90} x^{90}=1+10 x+55 x^{2}+\cdots+10 x^{89}+x^{90}
$$

Find $c_{0}+c_{1}+c_{2}+\cdots+c_{90}$.
4. Let m be the integer whose binary (base 2) representation is 1010101. Find the binary representation of m^{2}.
5. Find the (unique) y so that $1 / 2<y$ and

$$
\frac{y^{2}}{\sqrt{1-y^{2}}}+\sqrt{1-y^{2}}=2 y
$$

6. Solve for x and y :

$$
\begin{aligned}
\log _{2}\left(x^{3} y^{4}\right) & =-2 \\
\log _{4}\left(x^{5} y^{7}\right) & =-1
\end{aligned}
$$

7. Let P be a polynomial of degree 5 . Given that $P(0)=0$, and $P(1)=$ $P(2)=P(3)=P(4)=P(5)=1$, find $P(8)$.
8. Let $\theta=\arctan 2+\arctan 3$. Find $1 / \sin ^{2} \theta$ and simplify fully.
9. Let $f(x)=|x|+|2 x-1|-|3 x-2|$. What is the area of the region inside the square $-1 \leq x \leq 1,-1 \leq y \leq 1$ and above the graph of $f(x)$? Write the answer as an improper fraction in lowest terms.
10. How many integer pairs (m, n) are there so that $0 \leq n \leq \sqrt{2} m$ and $m \leq 10$?
11. Find the sum of $5!/(a!b!c!)$ over all lists (a, b, c) of nonnegative integers so that $a+b+c=5$.
12. Find a and b, with $b>0$, so that $(x-b)^{2}$ is a factor of $x^{4}-a x+1$.
13. Find the exact value of $\tan \pi / 8$ and simplify.
14. How many real numbers x are there such that $\sin 2 x+\cos 2 x=1+\cos 3 x$ and $0<x<2 \pi$?
15. Let C be the unit cube with corners such that each coordinate is 0 or 1 . (Thus, $(0,0,0)$ and $(1,1,1)$ are a pair of opposite corners.) Let H be the set of all points inside C and equally distant from those two corners. Let T be that part of the cube consisting of all points that are on some line segment joining $(1,1,1)$ to a point in H. Find the volume of T.
16. Find integers A, B, C, D so that

$$
\cos 3 x=A \cos ^{3} x+B \cos ^{2} x+C \cos x+D .
$$

17. Given that $x+y=A$ and $x^{2}+y^{2}=B$, express $x^{4}+y^{4}$ in the form $P A^{4}+Q A^{2} B+R B^{2}$. That is, find values for P, Q, and R that ensure the identity holds whatever the values of x and y.
18. Find the least prime number that divides $10!+1$.
19. Two vertices of a triangle are $(0,0)$ and $(1,0)$. The third is taken at random from the line segment from $(-1,1)$ to $(2,1)$. What is the probability that the triangle entirely encloses the circle about $(1 / 2,1 / 2)$ of radius $1 / 10$?
