BEST STUDENT EXAM
Texas A\&M High School Math Contest
October 21, 2017

Directions: Answers should be simplified, and if units are involved include them in your answer.

1. The lengths of the altitudes of a triangle are proportional to 15,21 and 35 . What is the largest internal angle of the triangle in degrees?
2. Simplify

$$
\sqrt{\sqrt{(100)(102)(104)(106)+16}+5}
$$

3. Joshua randomly picks a positive perfect square less than 2017, Jay randomly picks a positive perfect cube less than 2017, and Jonathan randomly picks a positive perfect sixth power less than 2017. What is the probability that all three picked the same number?
4. Consider an equilateral triangle with side length $2 a$. We make folds along the three line segments connecting the midpoints of its sides, until the vertices of the triangle coincide. What is the volume of the resulting tetrahedron?
5. Define a sequence $\left(x_{n}\right)_{n \geq 1}$ recursively by $x_{1}=0, x_{n}=\sqrt{2+x_{n-1}}$ for $n \geq 2$. What is arccos $\left(\frac{x_{5}}{2}\right)$ in radians?
6. Determine the remainder upon dividing $6^{2017}+8^{2017}$ by 49 .
7. Let

$$
P_{n}=\frac{7}{9} \times \frac{26}{28} \times \frac{63}{65} \times \cdots \times \frac{n^{3}-1}{n^{3}+1}
$$

Find $\lim _{n \rightarrow \infty} P_{n}$.
8. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\tan ^{2017} x}$.
9. For a sequence $A=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ define a new sequence $\Delta(A)=\left(a_{1}-a_{0}, a_{2}-a_{1}, a_{3}-a_{2}, \ldots\right)$. Suppose that $\Delta(\Delta(A))=(1,1,1, \ldots)$, and $a_{20}=a_{17}=0$. Find a_{0}.
10. Find the height of the right circular cone of minimum volume which can be circumscribed about a sphere of radius R.
11. Find the greatest integer preceding $\sum_{n=1}^{10,000} \frac{1}{\sqrt{n}}$.
12. In an isosceles triangle $\triangle A B C(A B=A C)$, the angle bisector of $\angle A C B$ divides the triangle $\triangle A B C$ into two other isosceles triangles. What is the ratio $\frac{|B C|}{|A B|}$?
13. Simplify the value of

$$
\frac{2018^{4}+4 \times 2017^{4}}{2017^{2}+4035^{2}}-\frac{2017^{4}+4 \times 2016^{4}}{2016^{2}+4033^{2}}
$$

14. How many pairs of positive integers x, y exist such that $x<y$ and $\frac{1}{x}+\frac{1}{y}=\frac{1}{200}$?
15. Given that it converges, evaluate

$$
\int_{0}^{1} \int_{0}^{1} \sum_{k=0}^{\infty} x^{(y+k)^{2}} d x d y
$$

16. A billiard ball (of infinitesimal diameter) strikes ray $\overrightarrow{B C}$ at point C, with angle of incidence $\alpha=2.5^{\circ}$. The billiard ball continues its path, bouncing off line segments $\overline{A B}$ and $\overline{B C}$, which are making an angle $\beta=17^{\circ}$, according to the rule "angle of incidence equals angle of reflection." If $A B=B C$, determine the number of times the ball will bounce off the two line segments (including the first bounce, at C).

17. Let $x_{1}, x_{2}, \ldots, x_{7}$ be the roots of the the polynomial $P(x)=\sum_{k=0}^{7} a_{k} x^{k}$, where

$$
a_{0}=a_{4}=\mathbf{2}, \quad a_{1}=a_{5}=\mathbf{0}, \quad a_{2}=a_{6}=\mathbf{1}, \quad a_{3}=a_{7}=\mathbf{7}
$$

Find

$$
\frac{1}{1-x_{1}}+\frac{1}{1-x_{2}}+\cdots+\frac{1}{1-x_{7}}
$$

18. A fair coin is tossed 9 times. What is the probability that no two consecutive heads appear?
