We denote by $S(n)$ the sum of the base 10 digits of a natural number n. For example, $S(2018)=2+0+1+8=11$.
Problem 1. Find all positive integers n such that $S\left(5^{n}\right)=2^{n}$.
Problem 2. Compute $S\left(S\left(S\left(2018^{2018}\right)\right)\right)$.
Problem 3. Find all positive integers n such that

$$
n+S(n)+S(S(n))+S(S(S(n)))=2018
$$

Problem 4. Prove the following inequalities for all natural numbers m and n
a) $S(m+n) \leq S(m)+S(n)$;
b) $S(m n) \leq S(m) S(n)$.

Problem 5. Prove that for every natural number n we have
a) $S(n) \leq 8 S(8 n)$;
b) $S(n) \leq 5 S\left(5^{5} n\right)$.

Problem 6. Prove that if $1 \leq x \leq 10^{n}$, then $S\left(x\left(10^{n}-1\right)\right)=9 n$.
Problem 7. Find $S(9 \cdot 99 \cdot 9999 \cdot \ldots \cdot \underbrace{99 \ldots 99}_{2^{n}})$, where each factor has twice as many digits as the previous one.

Problem 8. Prove that for every positive integer n there exists a positive integer x such that $x+S(x)=n$ or $x+S(x)=n+1$.
Problem 9. Prove that there exist 50 pairwise distinct positive integers n for which the value $n+S(n)$ is the same.
Problem 10. Does there exist n such that $S(n)=1000$ and $S\left(n^{2}\right)=$ 1000^{2} ?

Problem 11.

a) Does there exist n such that
i) $S\left(n^{2}\right)=2018 ?$
ii) $S\left(n^{2}\right)=2017$?
b) Describe all k for which there exists n such that $S\left(n^{2}\right)=k$.

