We denote by S(n) the sum of the base 10 digits of a natural number n. For example, S(2018) = 2 + 0 + 1 + 8 = 11.

Problem 1. Find all positive integers n such that $S(5^n) = 2^n$.

Problem 2. Compute $S(S(S(2018^{2018})))$.

Problem 3. Find all positive integers n such that

n + S(n) + S(S(n)) + S(S(S(n))) = 2018.

Problem 4. Prove the following inequalities for all natural numbers m and n

- a) $S(m+n) \leq S(m) + S(n);$ b) $S(mn) \leq S(m) S(n);$
- b) $S(mn) \leq S(m)S(n)$.

Problem 5. Prove that for every natural number n we have

- a) $S(n) \le 8S(8n);$
- b) $S(n) \le 5S(5^5n)$.

Problem 6. Prove that if $1 \le x \le 10^n$, then $S(x(10^n - 1)) = 9n$.

Problem 7. Find $S(9 \cdot 99 \cdot 9999 \cdot \ldots \cdot 99 \ldots 99)$, where each factor has

twice as many digits as the previous one.

Problem 8. Prove that for every positive integer n there exists a positive integer x such that x + S(x) = n or x + S(x) = n + 1.

Problem 9. Prove that there exist 50 pairwise distinct positive integers n for which the value n + S(n) is the same.

Problem 10. Does there exist n such that S(n) = 1000 and $S(n^2) = 1000^2$?

Problem 11.

- a) Does there exist n such that
 - i) $S(n^2) = 2018?$
 - ii) $S(n^2) = 2017?$
- b) Describe all k for which there exists n such that $S(n^2) = k$.