BC EXAM Texas A&M High School Math Contest October 20 2018

Directions: All answers must be simplified, and if units are involved, include them in your answer.

- 1. Two distinct polynomials $x^2 + ax + b$ and $x^2 + bx + a$ share a linear factor. Find a + b.
- 2. The figure below suggests how to stack n^2 equal circles and wrap a wire around them. What is the length of the shortest wire that wraps around a stack of 2025 circles of radius 1?

3. In an equilateral triangle $\triangle ABC$, segments AA_1 , BB_1 and CC_1 are equal segments. If $\angle B_1C_1C$ is a right angle, find the ratio of the area of $\triangle A_1B_1C_1$ to the area of $\triangle ABC$.

4. The triangle PAB is formed by three tangents to a circle centered at the point O and $\angle APB = 40^{\circ}$. Find $\angle AOB$.

5. A function f satisfies the following conditions for all positive integers n.

$$f(2n) = f(n),$$
 $f(2n+1) = f(n) + 1,$ $f(1) = 1$

Find the smallest n such that f(n) = 7.

- 6. From a two digit number N we subtract the number with the digits reversed and find that the result is a positive cube. Find all possible N.
- 7. A point F is taken on the extension of side AD of a parallelogram ABCD as shown below. The segment BF intersects diagonal AC at E and the side DC at G. If EF = 32 and GF = 24, find BE.

8. Consider a rectangle ABCD with AB = 3 and BC = 4. Reflect a right triangle $\triangle BCD$ along the diagonal BD to obtain a right triangle $\triangle BDE$, and then rotate $\triangle BCD$ about the vertex B to obtain a right triangle $\triangle BGF$. Let points H, I and J be the intersections between segments as below. Find the area of a quadrilateral EJIH.

- 9. If $x = \sqrt{3 \sqrt{8}}$, find $x^7 + \frac{1}{x^7}$.
- 10. Find the number of all possible solutions of the equation xyz = 8000 when x, y and z are positive integers.
- 11. Let n be a three digit positive integer. Define a function f(n) by

f(n) = (the sum of the digits of n) + (the sum of the products of two digits of n) + (the product of the digits of n).For example, if n = 234,

$$f(n) = (2+3+4) + (2\cdot 3 + 3\cdot 4 + 4\cdot 2) + (2\cdot 3\cdot 4).$$

Find all possible three digit positive integers n such that f(n) = n.

- 12. Three radars are spaced 6, 8, and 10 miles from each other on the ground, which is assumed to be horizontal. The radars spot an airplane at a distance of 13 miles at the same time. What is the elevation of the airplane?
- 13. Find all integer solutions (x, y) of the equation $15x^2 5xy 16x + 7y + 6 = 0$.
- 14. Let AB be a diameter of a circle. A point C is chosen on the extension of AB beyond B. Points D and E are chosen on the circle so that BC = BD and EA = EC. Find the ratio BC : EC if CD is tangent to the circle.

- 15. Given a natural number n, four students A, B, C, and D claimed as follows.
 - A: 20 < n < 50.
 - B: n is a divisor of 120.
 - C: n has 8 divisors (natural numbers)
 - D: n is a multiple of 12.

If one and only one student made a false statement, who is it?

16. A line ℓ bisects both of the perimeter and the area of a right triangle $\triangle ABC$ as in the picture below. Find AQ if AB = 3, BC = 4.

17. Find all pairs (x, y) satisfying the system $\begin{cases} 2x^2 + 7xy + 6y^2 = 12\\ 7x^2 + 20xy + 14y^2 = 23. \end{cases}$

18. Let A and B be two positive integers and let

$$A + B = C$$
$$B + C = D$$
$$C + D = E$$
$$\vdots$$
$$L + M = N$$
$$\vdots$$
$$X + Y = Z.$$

Find G if $A + B + C + \dots + J = 990$.

19. An isosceles $\triangle ABC$ is made out of 3 smaller isosceles $\triangle AED$, $\triangle EBD$, and $\triangle BCD$ with AE = AD, ED = EB, BD = BC, and AB = AC. Find the area of $\triangle BCD$ if the area of $\triangle ABC$ is 1.

20. A triangle has sides $x^2 + x + 1$, 2x + 1 and $x^2 - 1$. Find the largest interior angle of the triangle.