BC EXAM
 Texas A\&M High School Math Contest
 October 202018

Directions: All answers must be simplified, and if units are involved, include them in your answer.

1. Two distinct polynomials $x^{2}+a x+b$ and $x^{2}+b x+a$ share a linear factor. Find $a+b$.
2. The figure below suggests how to stack n^{2} equal circles and wrap a wire around them. What is the length of the shortest wire that wraps around a stack of 2025 circles of radius 1 ?

3. In an equilateral triangle $\triangle A B C$, segments $A A_{1}, B B_{1}$ and $C C_{1}$ are equal segments. If $\angle B_{1} C_{1} C$ is a right angle, find the ratio of the area of $\triangle A_{1} B_{1} C_{1}$ to the area of $\triangle A B C$.

4. The triangle $P A B$ is formed by three tangents to a circle centered at the point O and $\angle A P B=40^{\circ}$. Find $\angle A O B$.

5. A function f satisfies the following conditions for all positive integers n.

$$
f(2 n)=f(n), \quad f(2 n+1)=f(n)+1, \quad f(1)=1
$$

Find the smallest n such that $f(n)=7$.
6. From a two digit number N we subtract the number with the digits reversed and find that the result is a positive cube. Find all possible N.
7. A point F is taken on the extension of side $A D$ of a parallelogram $A B C D$ as shown below. The segment $B F$ intersects diagonal $A C$ at E and the side $D C$ at G. If $E F=32$ and $G F=24$, find $B E$.

8. Consider a rectangle $A B C D$ with $A B=3$ and $B C=4$. Reflect a right triangle $\triangle B C D$ along the diagonal $B D$ to obtain a right triangle $\triangle B D E$, and then rotate $\triangle B C D$ about the vertex B to obtain a right triangle $\triangle B G F$. Let points H, I and J be the intersections between segments as below. Find the area of a quadrilateral $E J I H$.

9. If $x=\sqrt{3-\sqrt{8}}$, find $x^{7}+\frac{1}{x^{7}}$.
10. Find the number of all possible solutions of the equation $x y z=8000$ when x, y and z are positive integers.
11. Let n be a three digit positive integer. Define a function $f(n)$ by $f(n)=($ the sum of the digits of $n)+($ the sum of the products of two digits of $n)+($ the product of the digits of $n)$.

For example, if $n=234$,

$$
f(n)=(2+3+4)+(2 \cdot 3+3 \cdot 4+4 \cdot 2)+(2 \cdot 3 \cdot 4)
$$

Find all possible three digit positive integers n such that $f(n)=n$.
12. Three radars are spaced 6,8 , and 10 miles from each other on the ground, which is assumed to be horizontal. The radars spot an airplane at a distance of 13 miles at the same time. What is the elevation of the airplane?
13. Find all integer solutions (x, y) of the equation $15 x^{2}-5 x y-16 x+7 y+6=0$.
14. Let $A B$ be a diameter of a circle. A point C is chosen on the extension of $A B$ beyond B. Points D and E are chosen on the circle so that $B C=B D$ and $E A=E C$. Find the ratio $B C: E C$ if $C D$ is tangent to the circle.

15. Given a natural number n, four students A, B, C, and D claimed as follows.

A: $20<n<50$.
B: n is a divisor of 120 .
C: n has 8 divisors (natural numbers)
D: n is a multiple of 12 .
If one and only one student made a false statement, who is it?
16. A line ℓ bisects both of the perimeter and the area of a right triangle $\triangle A B C$ as in the picture below. Find $A Q$ if $A B=3, B C=4$.

17. Find all pairs (x, y) satisfying the system $\left\{\begin{array}{l}2 x^{2}+7 x y+6 y^{2}=12 \\ 7 x^{2}+20 x y+14 y^{2}=23 .\end{array}\right.$
18. Let A and B be two positive integers and let

$$
\begin{gathered}
A+B=C \\
B+C=D \\
C+D=E \\
\vdots \\
L+M=N \\
\vdots \\
X+Y=Z .
\end{gathered}
$$

Find G if $A+B+C+\cdots+J=990$.
19. An isosceles $\triangle A B C$ is made out of 3 smaller isosceles $\triangle A E D, \triangle E B D$, and $\triangle B C D$ with $A E=A D$, $E D=E B, B D=B C$, and $A B=A C$. Find the area of $\triangle B C D$ if the area of $\triangle A B C$ is 1 .

20. A triangle has sides $x^{2}+x+1,2 x+1$ and $x^{2}-1$. Find the largest interior angle of the triangle.

