BC EXAM SOLUTIONS
 Texas A\&M High School Math Contest

October 202018
Directions: All answers must be simplified, and if units are involved, include them in your answer.

1. Two distinct polynomials $x^{2}+a x+b$ and $x^{2}+b x+a$ share a linear factor. Find $a+b$.

Answer. $a+b=-1$
Solution. Let $x-\gamma$ be the common factor. Then $x=\gamma$ is a common root of those two polynomials. This yields

$$
\begin{equation*}
\gamma^{2}+a \gamma+b=0 \quad \text { and } \quad \gamma^{2}+b \gamma+a=0 \tag{1}
\end{equation*}
$$

Subtracting these, we get

$$
\begin{equation*}
(a-b) \gamma+b-a=0 \Rightarrow(a-b)(\gamma-1)=0 \tag{2}
\end{equation*}
$$

Since the polynomials are distinct, we get $a \neq b$ and thus (2) implies $\gamma=1$. Plugging this into (1) we have $a+b=-1$.
2. The figure below suggests how to stack n^{2} equal circles and wrap a wire around them. What is the length of the shortest wire that wraps around a stack of 2025 circles of radius 1 ?

Answer. $352+2 \pi$
Solution. Since $2025=45^{2}$, we have a square of 45 circles by 45 circles. The four round corners form a circle, which gives us 2π for the length of wire. The distance between the two outer circles on each side is $2 \cdot(45-1)$. Thus the length of the wire is

$$
4 \cdot 2 \cdot(45-1)+2 \pi=352+2 \pi
$$

3. In an equilateral triangle $\triangle A B C$, segments $A A_{1}, B B_{1}$ and $C C_{1}$ are equal segments. If $\angle B_{1} C_{1} C$ is a right angle, find the ratio of the area of $\triangle A_{1} B_{1} C_{1}$ to the area of $\triangle A B C$.

Answer. $\frac{1}{3}$
Solution. The triangle $\triangle C C_{1} B_{1}$ is a right triangle with $\angle C=60^{\circ}$. Thus if $C_{1} C=a$ then $C B_{1}=2 a$ and $B_{1} C_{1}=\sqrt{3} a$ (You may think of the right half of an equilateral triangle with side length 2). Since it can be
shown that all three smaller triangles involving (i.e., containing as the vertices) the points A_{1}, B_{1} and C_{1} are congruent we have

$$
\frac{B_{1} C_{1}}{A C}=\frac{B_{1} C_{1}}{A C_{1}+C_{1} C}=\frac{\sqrt{3} a}{2 a+a}=\frac{\sqrt{3}}{3} .
$$

So the ratio of the area of $\triangle A_{1} B_{1} C_{1}$ to the area of $\triangle A B C$ is $\left(\frac{\sqrt{3}}{3}\right)^{2}=\frac{1}{3}$.
4. The triangle $P A B$ is formed by three tangents to a circle centered at the point O and $\angle A P B=40^{\circ}$. Find $\angle A O B$.

Answer. $\angle A O B=70^{\circ}$
Solution. The sum of all angles of the quadrilateral $P T O R$ is 360°. Since $\angle T$ and $\angle R$ are right angles and $\angle P=40^{\circ}$, we get that $\angle T O R=140^{\circ}$. Now $O A$ and $O B$ are the bisectors of $\angle S O T$ and $\angle S O R$ respectively. It follows that $\angle A O B=\frac{1}{2} \angle T O R=70^{\circ}$.
5. A function f satisfies the following conditions for all positive integers n.

$$
f(2 n)=f(n), \quad f(2 n+1)=f(n)+1, \quad f(1)=1
$$

Find the smallest n such that $f(n)=7$.
Answer. $n=127$.
Solution. Observe that $f(n)$ is the sum of the digits in the base 2 expansion of n. It follows that the smallest n with $f(n)=7$ is the number 1111111_{2}, which is 127 in base 10 .
6. From a two digit number N we subtract the number with the digits reversed and find that the result is a positive cube. Find all possible N.
Answer. $N=30,41,52,63,74,85,96$.
Solution. Let $N=10 t+u$ for some decimal digits t and u. Then we have

$$
10 t+u-(10 u+t)=9(t-u)
$$

Since $t-u \leq 9$ we see that $9(t-u) \leq 81$. The only possible two digit cubes are

$$
1,8,27,64 .
$$

The only number which is divisible by 9 is 27 , which implies $9(t-u)=27$. Since $t=u+3$, the number N must be of the form $N=11 u+30$, where $10 \leq N \leq 99$. So $10 \leq 11 u+30 \leq 99$. This yields that $0 \leq u \leq 6$. Hence N must be one of

$$
30,41,52,63,74,85,96 .
$$

7. A point F is taken on the extension of side $A D$ of a parallelogram $A B C D$ as shown below. The segment $B F$ intersects diagonal $A C$ at E and the side $D C$ at G. If $E F=32$ and $G F=24$, find $B E$.

Answer. $B E=16$
Solution. Let $B E=x, D G=y$, and $A B=b$. Since $\triangle B E A \sim \triangle G E C$,

$$
\frac{8}{x}=\frac{b-y}{b}, \quad b-y=\frac{8 b}{x}, \quad y=b-\frac{8 b}{x}=\frac{b(x-8)}{x} .
$$

Since $\triangle F D G \sim \triangle B C G$,

$$
\frac{24}{x+8}=\frac{y}{b-y}, \quad \frac{24}{x+8}=\frac{b(x-8)}{x \cdot(8 b / x)}=\frac{x-8}{8} .
$$

Therefore $x^{2}-64=192$ or $x=16$.
8. Consider a rectangle $A B C D$ with $A B=3$ and $B C=4$. Reflect the right triangle $\triangle B C D$ along the diagonal $B D$ to obtain a right triangle $\triangle B D E$, and then rotate $\triangle B C D$ about the vertex B to obtain a right triangle $\triangle B G F$. Let points H, I and J be the intersections between segments as below. Find the area of a quadrilateral $E J I H$.

Answer. The area is $\frac{49}{48}$.
Solution. Since $\triangle B C D \cong \triangle B E D \cong \triangle B G F$,

$$
B D=B F=5, \quad E D=3, \quad B E=B G=4, \quad E F=D G=B D-B G=1
$$

In addition, $\triangle J E D \cong \triangle J A B$, which implies that $J D=A D-A J=4-E J$. By the Pythagorean theorem $E J^{2}+E D^{2}=J D^{2}$, or

$$
E J^{2}+3^{2}=(4-E J)^{2}
$$

Therefore, $E J=A J=\frac{7}{8}$. So $J D=4-A J=\frac{25}{8}$. Let h denote the height of a right triangle $\triangle E J D$ with the base $J D$. Then we have

$$
h=\frac{E J \cdot E D}{J D}=\frac{7 / 8 \cdot 3}{25 / 8}=\frac{21}{25} .
$$

The similarity between $\triangle B C D$ and $\triangle H G D$ implies that

$$
\frac{D H}{D G}=\frac{5}{3} \quad \text { or } \quad D H=\frac{5}{3} .
$$

If h^{\prime} is the height of $\triangle I D H$ with the base $I D$ then,

$$
\frac{D H}{D E}=\frac{h^{\prime}}{h} \quad \text { or } \quad h^{\prime}=\frac{5 / 3 \cdot 21 / 25}{3}=\frac{21}{45} .
$$

Since $\triangle D G I$ is similar to $\triangle B C D$,

$$
\frac{I D}{D G}=\frac{5}{4} \quad \text { or } \quad I D=\frac{5}{4} .
$$

Thus the desired area becomes

$$
\operatorname{Area}(E J I H)=\operatorname{Area}(\triangle E J D)-\operatorname{Area}(\triangle I D H)=\frac{1}{2}\left(\frac{7}{8} \cdot 3-\frac{5}{4} \cdot \frac{21}{45}\right)=\frac{147}{144}=\frac{49}{48}
$$

9. If $x=\sqrt{3-\sqrt{8}}$, find $x^{7}+\frac{1}{x^{7}}$.

Answer. $x^{7}+\frac{1}{x^{7}}=338 \sqrt{2}$
Solution. By rewriting $\sqrt{3-\sqrt{8}}=\sqrt{3-2 \sqrt{2}}=\sqrt{(\sqrt{2}-1)^{2}}$ we have $x=\sqrt{2}-1$. We also have

$$
\begin{aligned}
x+\frac{1}{x} & =\sqrt{2}-1+\frac{1}{\sqrt{2}-1}=\sqrt{2}-1+\sqrt{2}+1=2 \sqrt{2}, \\
x^{2}+\frac{1}{x^{2}} & =\left(x+\frac{1}{x}\right)^{2}-2=(2 \sqrt{2})^{2}-2=6, \\
x^{3}+\frac{1}{x^{3}} & =\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)=(2 \sqrt{2})^{3}-3 \cdot 2 \sqrt{2}=10 \sqrt{2}, \\
x^{4}+\frac{1}{x^{4}} & =\left(x^{2}+\frac{1}{x^{2}}\right)^{2}-2=34 .
\end{aligned}
$$

So the given expression becomes

$$
x^{7}+\frac{1}{x^{7}}=\left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{4}+\frac{1}{x^{4}}\right)-\left(x+\frac{1}{x}\right)=340 \sqrt{2}-2 \sqrt{2}=338 \sqrt{2} .
$$

10. Find the number of all possible solutions of the equation $x y z=8000$ when x, y and z are positive integers.

Answer. 280

Solution. Since $8000=2^{6} 5^{3}$ we may assume

$$
x=2^{a} 5^{d}, \quad y=2^{b} 5^{e}, \quad z=2^{c} 5^{f}
$$

for some non-negative integers a, b, c, d, e, f. Thus

$$
2^{a+b+c} 5^{d+e+f}=x y z=8000=2^{6} 5^{3} .
$$

We need to find the number of 6 -tuples (a, b, c, d, e, f) with

$$
a+b+c=6, \quad d+e+f=3
$$

Observe that, for any integer a with $0 \leq a \leq 6$, there exist $7-a$ pairs (b, c) such that $b+c=6-a$. The number of triples (a, b, c) with $a+b+c=6$ is

$$
\sum_{a=0}^{6}(7-a)=7+6+5+4+3+2+1=28
$$

Similarly, the number of triples (d, e, f) with $d+e+f=3$ is

$$
\sum_{d=0}^{3}(4-d)=4+3+2+1=10
$$

Since we can choose such triples (a, b, c) and (d, e, f) independently the number of solutions is $28 \times 10=280$.
11. Let n be a three digit positive integer. Define a function $f(n)$ by $f(n)=($ the sum of the digits of $n)+($ the sum of the products of two digits of $n)+($ the product of the digits of $n)$. For example, if $n=234$,

$$
f(n)=(2+3+4)+(2 \cdot 3+3 \cdot 4+4 \cdot 2)+(2 \cdot 3 \cdot 4) .
$$

Find all possible three digit positive integers n such that $f(n)=n$.
Answer. $n=199,299,399,499,599,699,799,899,999$.
Solution. We can write n as

$$
n=100 a+10 b+c,
$$

where $1 \leq a \leq 9,0 \leq b, c \leq 9$. Then

$$
f(n)=a+b+c+a b+b c+a c+a b c=(1+a)(1+b)(1+c)-1 .
$$

Thus we have

$$
100 a+10 b+c=(1+a)(1+b)(1+c)-1 \quad \text { or } \quad 100 a+10 b+c=a(1+b)(1+c)+b+c+b c
$$

We read the above as a linear expression in a and write

$$
(100-(1+b)(1+c)) a=b(c-9) .
$$

Since $(100-(1+b)(1+c)) a \geq 0$ and $b(c-9) \leq 0$ we have

$$
(100-(1+b)(1+c)) a=b(c-9)=0 .
$$

This implies $c=9$ and then $b=9$ because $a \neq 0$. So

$$
n=100 a+90+9=(1+a)(1+9)(1+9)-1 .
$$

And since $1 \leq a \leq 9$, the desired integers are

$$
n=199,299,399,499,599,699,799,899,999 .
$$

12. Three radars are spaced 6,8 , and 10 miles from each other on the ground, which is assumed to be horizontal. The radars spot an airplane at a distance of 13 miles at the same time. What is the elevation of the airplane?

Answer. 12 miles.
Solution. Note that $(6,8,10)$ is a Pythagorean triple since $10^{2}=6^{2}+8^{2}$. This means that the location of the radars form a right triangle on the ground, and since the airplane is equidistant from the radars, it must be right above the intersection of the three perpendicular side bisectors of the triangle on the ground, which for a right triangle is at the middle point of its hypotenuse, call it H. If the location of the airplane is called P, then $\overline{P H}$ is perpendicular to the ground, and Pythagorean theorem implies that $P H=\sqrt{13^{2}-(10 / 2)^{2}}=12$.
13. Find all integer solutions (x, y) of the equation $15 x^{2}-5 x y-16 x+7 y+6=0$.

Answer. $(4,14)$
Solution. We factor the given equation as follows.

$$
\begin{array}{rlr}
& 15 x^{2}-5 x y-16 x+7 y+6=0 & \Rightarrow \\
\\
\Rightarrow 5 x(3 x-y)-5(3 x-y)-x+2 y+6=0 & \Rightarrow & (3 x-y)(5 x-5)-(3 x-y)+2 x+y+6=0 \\
\Rightarrow(3 x-y)(5 x-6)-(3 x-y)+5 x+6=0 & \Rightarrow & (3 x-y)(5 x-7)+5 x-7+13=0 \\
\Rightarrow(3 x-y+1)(5 x-7)+13=0 & \Rightarrow & (3 x-y+1)(5 x-7)=-13
\end{array}
$$

Since we are looking for integer solutions and $5 x-7 \neq \pm 1$ for all integers x, we conclude that $5 x-7= \pm 13$. Consequently $x=4$. Thus we have $(12-y+1) 13=-13$ or $y=14$.
14. Let $A B$ be a diameter of a circle. A point C is chosen on the extension of $A B$ beyond B. Points D and E are chosen on the circle so that $B C=B D$ and $E A=E C$. Find the ratio $B C: E C$ if $C D$ is tangent to the circle.

Answer. $B C: E C=1: \sqrt{3}$
Solution. Let O be the center of the circle. Draw a line segment $A D$ to have a right triangle $\triangle A B D$. Note that $\triangle B D C$ and $\triangle E A C$ are isosceles triangles. Also $\triangle O A D$ is an isosceles. Let $\angle O C E=\alpha$ and $\angle O C D=\beta$. Then we have $\angle O A E=\alpha$. Since $\angle O D C=90^{\circ}$,

$$
\angle B D C=\angle O D A=\angle O A D=\beta .
$$

Considering complement angles and supplementary angles we can show that

$$
\angle A O D=180^{\circ}-2 \beta, \quad \angle D O C=90^{\circ}-\beta
$$

and that

$$
\left(180^{\circ}-2 \beta\right)+\left(90^{\circ}-\beta\right)=180^{\circ} \quad \text { or } \quad \beta=30^{\circ} .
$$

Consequently $\triangle O D B$ is an equilateral triangle and so $O A=O D=O B=B D=B C$. Thus $\triangle O A D \cong$ $\triangle B D C$. In particular, $A D=D C$.
Next draw a line segment $D E$ to have $\triangle A D E \cong \triangle C D E$. This congruence implies that $D E$ bisects $\angle A D C=$ 120°. Now $\angle A E D$ is the inscribed angle determined by an arc $A D$, and so $\angle A E D=\frac{\angle A O D}{2}=60^{\circ}$. Therefore $\angle E A D=60^{\circ}$ and so $\triangle A D E$ is also an equilateral triangle.
The answer follows from $A D=D C=E C$;

$$
B C: E C=B D: A D=1: \sqrt{3} .
$$

15. Given a natural number n, four students A, B, C, and D claimed the following.

A: $20<n<50$.
B: n is a divisor of 120 .
C: n has 8 divisors (natural numbers)
D: n is a multiple of 12 .
If one and only one student made a false statement, who is it?
Answer. D
Solution. First consider the case when C and D are both true. The only multiple n of $12=2^{2} \cdot 3$ with 8 divisors is $n=2^{3} \cdot 3=24$. However $n \neq 24$ as then all four are true. We see that either C or D is false. There are three integers $n=24,30,40$ which satisfy both A and B. Since $n \neq 24$, we have $n=30,40$. For each of those numbers we see that D is false.
16. A line ℓ bisects both of the perimeter and the area of a right triangle $\triangle A B C$ as in the picture below. Find $A Q$ if $A B=3, B C=4$.

Answer. $A Q=3+\frac{\sqrt{6}}{2}$.
Solution. Let $A P=y$ and $A Q=x$. Since the line bisects the perimeter of $\triangle A B C$ we see that $x+y=$ $\frac{3+4+5}{2}=6$. Let h be the height of $\triangle A P Q$ with the base $A P$. Then we have

$$
x: 5=h: 4 \quad \text { or } \quad h=\frac{4 x}{5} .
$$

The area of $\triangle A P Q$ is 3 because it is the half of the area of $\triangle A B C$, and so

$$
\frac{y h}{2}=\frac{1}{2}\left(y \frac{4 x}{5}\right)=\frac{2 x y}{5}=3 .
$$

Solving the system of equations $x+y=6$ and $x y=\frac{15}{2}$ we have

$$
x(6-x)=\frac{15}{2} \quad \text { or } \quad 2 x^{2}-12 x+15=0
$$

Thus we have

$$
x=\frac{6 \pm \sqrt{6}}{2}=3 \pm \frac{\sqrt{6}}{2} .
$$

If $x=3-\frac{\sqrt{6}}{2}$ then $y=3+\frac{\sqrt{6}}{2}>3=A B$, which is impossible. So $A Q=3+\frac{\sqrt{6}}{2}$.
17. Find all pairs (x, y) satisfying the system $\left\{\begin{array}{l}2 x^{2}+7 x y+6 y^{2}=12 \\ 7 x^{2}+20 x y+14 y^{2}=23 .\end{array}\right.$

Answer. ($-1,2$) and ($1,-2$)
Solution. The left hand side of the first equation has a factoring;

$$
2 x^{2}+7 x y+6 y^{2}=12 \Leftrightarrow(x+2 y)(2 x+3 y)=12
$$

By substituting $x+2 y=u$ and $2 x+3 y=v$, we can rewrite the second equation as

$$
7 x^{2}+20 x y+14 y^{2}=23 \Leftrightarrow 2 v^{2}-u^{2}=23 .
$$

The given system can be written as $\left\{\begin{array}{l}u v=12 \\ 2 v^{2}-u^{2}=23 .\end{array}\right.$ Eliminating $u=\frac{12}{v}$ we have

$$
2 v^{2}-\left(\frac{12}{v}\right)^{2}=23 \Rightarrow 2 v^{4}-23 v^{2}-144=0 \Rightarrow\left(2 v^{2}+9\right)\left(v^{2}-16\right)=0
$$

So $v= \pm 4$ and thus $(u, v)=(3,4)$ or $(-3,-4)$. This implies

$$
\left\{\begin{array} { l }
{ x + 2 y = 3 } \\
{ 2 x + 3 y = 4 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x+2 y=-3 \\
2 x+3 y=-4
\end{array}\right.\right.
$$

The system has the solution

$$
\left\{\begin{array} { l }
{ x = - 1 } \\
{ y = 2 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=1 \\
y=-2 .
\end{array}\right.\right.
$$

18. Let A and B be two positive integers and let

$$
\begin{gathered}
A+B=C \\
B+C=D \\
C+D=E \\
\vdots \\
L+M=N \\
\vdots \\
X+Y=Z .
\end{gathered}
$$

Find G if $A+B+C+\cdots+J=990$.
Answer. $G=90$.
Solution. With parameters $A=s$ and $B=t$ we can write

A	=	s		
B	$=$			t
C	$=$	s	+	t
D	$=$	s	+	$2 t$
E	$=$	$2 s$	+	$3 t$
F	$=$	3 s	$+$	$5 t$
G	$=$	$5 s$	+	$8 t$
H	$=$	$8 s$	+	$13 t$
I	$=$	13 s	+	$21 t$
J	$=$	21 s	+	$34 t$

Adding up the above, we have

$$
A+B+\cdots+J=55 s+88 t=11(5 s+8 t)=990
$$

Thus $G=5 s+8 t=90$.
19. An isosceles $\triangle A B C$ is made out of 3 smaller isosceles $\triangle A E D, \triangle E B D$, and $\triangle B C D$ with $A E=A D$, $E D=E B, B D=B C$, and $A B=A C$. Find the area of $\triangle B C D$ if the area of $\triangle A B C$ is 1 .

Answer. The area is $\frac{3-\sqrt{5}}{2}$.

Solution.

Let $\angle B C D=\alpha$ and $\angle B D E=\beta$. Then $\angle C B D=\pi-2 \alpha, \angle A E D=2 \beta$, and $\angle A D E=\pi-(\alpha+\beta)$. Since $\triangle A D E$ and $\triangle A B C$ are isosceles,

$$
2 \beta=\pi-(\alpha+\beta) \quad \pi-2 \alpha+\beta=\alpha .
$$

So we have $\alpha=\frac{2 \pi}{5}$ and $\beta=\frac{\pi}{5}$. This means that $\triangle D A B$ is an isosceles because $\angle B A D=\pi-2 \alpha=\frac{\pi}{5}=\beta$. Let $A D=x$ and $D C=y$. Observe that two triangles $\triangle A B C$ and $\triangle B C D$ are similar. So we have

$$
A C: B C=(x+y): x=x: y .
$$

Since the area of $\triangle A B C$ is 1 , the area of $\triangle B C D$ is the square of the ratio $\frac{x}{x+y}=\frac{y}{x}$. To find the ratio we rewrite it as

$$
\frac{x}{y}=\frac{x+y}{x}=1+\frac{y}{x} .
$$

Setting $X=\frac{y}{x}$ we have $X>0$ and $X^{2}+X-1=0$, which implies $X=\frac{y}{x}=\frac{-1+\sqrt{5}}{2}$. Therefore the area of $\triangle B C D$ is $X^{2}=\frac{3-\sqrt{5}}{2}$.
20. A triangle has sides $x^{2}+x+1,2 x+1$ and $x^{2}-1$. Find the largest interior angle of the triangle.

Answer. 120° or $\frac{2 \pi}{3}$
Solution. All three sides have positive lengths; $2 x+1>0$ and $x^{2}-1>0$. So we have $x>1$. Since

$$
x^{2}+x+1-(2 x+1)=x(x-1)>0, \quad x^{2}+x+1-\left(x^{2}-1\right)=x+2>0
$$

we see that the longest side has the length $x^{2}+x+1$. Let θ be the angle opposite to it. Then by the Law of Cosine we get

$$
\cos \theta=\frac{(2 x+1)^{2}+\left(x^{2}-1\right)^{2}-\left(x^{2}+x+1\right)^{2}}{2(2 x+1)\left(x^{2}-1\right)}=\frac{-(2 x+1)\left(x^{2}-1\right)}{2(2 x+1)\left(x^{2}-1\right)}=-\frac{1}{2} .
$$

Therefore $\theta=120^{\circ}$.

