CD Exam
Texas A\&M High School Math Contest

October 20, 2018

1. For any positive integer n let $D(n)$ denote the sum of its digits (in decimal notation). Find all integers n such that $n+3 D(n)=2018$.
2. A 5×5 square drawn on the square grid is then cut into several rectangles of distinct areas (all cuts go along the grid lines). What is the maximal possible number of pieces in such a partition?
3. How many ways there are to change a $\$ 20$ bill into smaller bills? (You can use $\$ 1, \$ 2$, $\$ 5$ and $\$ 10$ bills; no coins are allowed.)
4. Given an equilateral triangle $A B C$ with side 1 , one chooses a point A_{1} on the side $B C$, a point B_{1} on the side $A C$, and a point C_{1} on the side $A B$. What is the maximal possible perimeter of the triangle $A_{1} B_{1} C_{1}$?
5. Solve for x the equation $|3-2| x|\mid=x+1$.
6. Find the last digit of the number $2018^{2017^{2016}}$.
7. Consider a right triangle $A B C$ with $\angle A=90^{\circ}$. Let D be the midpoint of the side $B C$ and E be a point on the side $A B$ such that $\angle A E C=\angle B E D$. Find the ratio $\frac{|A E|}{|E B|}$.
8. The equation $x^{4}+4 x^{3}-3 x^{2}+4 x+1=0$ has two real solutions. Find their sum.
9. A positive integer m can be represented as $2^{4} p_{1} p_{2} p_{3}$, where p_{1}, p_{2}, p_{3} are some odd prime numbers (not necessarily distinct). The integer $m+100$ can be represented as $5 q_{1} q_{2} q_{3}$, where q_{1}, q_{2}, q_{3} are prime numbers different from 5 (not necessarily distinct). The integer $m+200$ can be represented as $23 r_{1} r_{2} r_{3} r_{4}$, where $r_{1}, r_{2}, r_{3}, r_{4}$ are prime numbers different from 23 (not necessarily distinct). Find m.
10. Solve for x the inequality $\sqrt{x-1} \leq 4-3 x-x^{2}$.
11. Three points A, B and C divide a circle of radius 1 into three arcs of equal length. We draw three more circles, each intersecting the original circle at two of the three points. All circles intersect at right angles. Find the area of the curvilinear triangle $A B C$ bounded by new circles.
12. Find all triples (x, y, z) satisfying the system

$$
\left\{\begin{array}{l}
x y z=1 \\
x^{4} y z^{2}=4 \\
x^{10} y z^{6}=16
\end{array}\right.
$$

13. Find all pairs of integers (x, y) satisfying the equation $2^{x}-3^{y}=1$.
14. Solve for x the equation $\sqrt{6+\sqrt{6+\sqrt{6+x}}}=x$.
15. Let $A B C$ be an isosceles triangle with the base $A B$. Let $A D$ be the median and $A E$ be the angle bisector of this triangle. Find the length of the leg $A C$ if $|A B|=5$ and $|D E|=6$.
16. Solve for x the equation $\log _{2} x \cdot \log _{2}(x-2)+1=\log _{2}\left(x^{2}-2 x\right)$.
17. Find all polynomials $P(x)$ such that $(P(x))^{2}=P(x-1) P(x+1)$ for all x.
18. In an acute triangle $A B C$ with the median $A D$ and the altitude $A E$, the point F at which the inscribed circle touches the side $B C$ is the midpoint of the segment $D E$. Find the perimeter of the triangle $A B C$ if $|B C|=1$.
19. Evaluate the sum

$$
\frac{1}{2 \cdot 3 \cdot 4}+\frac{2}{3 \cdot 4 \cdot 5}+\frac{3}{4 \cdot 5 \cdot 6}+\cdots+\frac{2015}{2016 \cdot 2017 \cdot 2018}
$$

20. Solve for x the equation $\sqrt[3]{2 x-1}-\sqrt[3]{x-1}=1$.
21. Let $a_{1}, a_{2}, \ldots, a_{2018}$ be the numbers $1,2, \ldots, 2018$ written in some order. What is the maximal possible value of $a_{1} a_{2}+a_{3} a_{4}+\cdots+a_{2017} a_{2018}$? The following equalities may (or may not) help to calculate the value:

$$
\begin{gathered}
1+2+3+4+\cdots+2017+2018=2037171 \\
-1^{2}+2^{2}-3^{2}+4^{2}-\cdots-2017^{2}+2018^{2}=2037171 \\
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+2017^{2}+2018^{2}=2741353109
\end{gathered}
$$

22. A sequence of real numbers $a_{1}, a_{2}, a_{3}, \ldots$ is built recursively using the rule $a_{n+2}=$ $a_{n} a_{n+1}+1$ for $n=1,2, \ldots$ The sequence happens to be periodic, that is, $a_{n+k}=a_{n}$ for some $k \geq 1$ and all n. Let s_{n} be the sign of the number $a_{n}\left(s_{n}\right.$ is + if $a_{n}>0$ and - if $a_{n}<0$; for $a_{n}=0$ it can be either + or -$)$. Assuming s_{1} is + , find all possible sequences $s_{1}, s_{2}, s_{3}, \ldots$ In each case, describe the sequence of signs completely or list at least the first 10 terms. (Hint: since the sequence $a_{1}, a_{2}, a_{3}, \ldots$ is periodic, some simple combinations of signs cannot occur in $s_{1}, s_{2}, s_{3}, \ldots$)
