DE Exam
 Texas A\&M High School Math Contest

October 20, 2018
All answers must be simplified, and if units are involved, be sure to include them.

1. Solve the equation $4^{x-3}-8^{x+5}=0$.
2. Find the value of $\frac{y}{z}$ if $3 w z+4 x y-2 w y-6 x z=0, w \neq 2 x$ and $z \neq 0$.
3. If $\log x+\log y=\frac{29}{10}$ and $\log x \log y=1$ find the value of

$$
\log _{x} y+\log _{y} x .
$$

4. Let x be a real number and y be a positive integer such that $x>1$ and $\frac{x}{3}=\frac{5 x+1}{3 y+2}$. Find y.
5. In the figure below we have $A C=2, B C=3, \angle D C A=15^{\circ}$, and $\angle E C B=30^{\circ}$. Find $A B$.

6. The probability that a worker with occupational exposure to dust contracts a lung disease is $\frac{1}{6}$. Three such workers are checked at random. Find the probability that at least one of them contracted a lung disease.
7. Find the value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \cdots \tan 88^{\circ} \tan 89^{\circ}$.
8. Find $x y$, where x and y satisfy the system of equations

$$
\begin{cases}\frac{1}{x-2}+\frac{1}{y} & =6 \\ 4 x+47 y-22 x y & =8\end{cases}
$$

9. Find the real number k such that the equation $\left|x^{2}-2 x-8\right|=k$ has exactly three real distinct solutions.
10. Find the coefficient of x^{2} in the expansion of $(2-x)^{6}(1+3 x)^{7}$.
11. Determine the sum of all integers n such that the number $n^{2}+9 n+14$ is the square of another integer.
12. Find the maximum value of the expression $\left(2 n^{2}+3 n\right) \sqrt{3}-\left(3 n^{2}+2 n\right) \sqrt{2}$, where n is an integer.
13. Let $P(x)$ be a polynomial of degree at least two such that the remainders for the division of $P(x)$ by $x-3$ and $x+5$ are 5 and -11 , respectively. Find the remainder of the division of $P(x)$ by $x^{2}+2 x-15$.
14. Simplify the fraction

$$
\frac{27 n^{3}+6 n^{2}-37 n+4}{27 n^{3}-21 n^{2}-70 n+8}
$$

and then find its value for $n=56789$.
15. Consider cartesian coordinates with the origin at the point O and axes $O B$ and $O T$. The diagram below shows the arch $A F T E B$ of a stone bridge. The bridge forms an arc of a circle and length $A B$ forms a chord of the circle. $A B$ is 24 feet and the top of the bridge T is 3 feet vertically above $A B$. C and D are midpoints of $O A$ and $O B . C F$ and $D E$ are two vertical pillars supporting the arch. Find the height of the pillar $D E$.

16. Find the value of $\log _{2}\left(x_{1} x_{2}\right)$, where x_{1} and x_{2} are the solutions of the equation

$$
\log _{2} x^{\sqrt{5}+1}+\log _{x} 4^{\sqrt{5}+1}=\log _{2}\left(16 x^{3}\right)-\log _{x} 16
$$

17. Consider the triangle $A B C$ in which the angle bisector of $\angle A$ intersects side $B C$ at a point M and the angle bisector of $\angle B$ intersects side $A C$ at a point N. Let O be the intersection point between $A M$ and $B N$. We know that $\frac{A O}{O M}=\sqrt{3}$ and $\frac{O N}{B O}=\sqrt{3}-1$. Find $\angle C$.
18. Find the distance from the center to the foci of the hyperbola with vertices $(5,-6)$ and $(5,6)$, passing through the point $(0,9)$.
19. Find $\cot ^{2} 36^{\circ} \cot ^{2} 72^{\circ}$.
20. Find the minimum value of the function

$$
f(x)=1 \cdot|x-1|+2 \cdot|x-2|+3 \cdot|x-3|+\cdots+20 \cdot|x-20| .
$$

