EF EXAM Solutions
Texas A\&M High School Math Contest
October 20, 2018

1. Let N be the product of all numbers that appear on the 10×10 multiplication chart, i.e., the numbers of the form $p q$, where $1 \leq p, q \leq 10$. What is the largest number m such that $\sqrt[m]{N}$ is an integer?

Answer. 20.

Solution. We have

$$
N=\prod_{p, q=1}^{10} p q=\prod_{q=1}^{10} \prod_{p=1}^{10} p q=\prod_{q=1}^{10} q^{10}(10!)=(10!)^{10}(10!)^{10}=(10!)^{20} .
$$

The highest power of the prime number 7 that divides $10!$ is 7^{1}, so the largest number m such that $\sqrt[m]{(10!)^{20}}$ is an integer is 20 .
2. How many real solutions does the following equation have?

$$
(x+1)^{2018}+(x+1)^{2017}(x-2)+(x+1)^{2016}(x-2)^{2}+\cdots+(x+1)(x-2)^{2017}+(x-2)^{2018}=0
$$

Answer. 0.

Solution. Using the identity

$$
b^{n}-a^{n}=(b-a) \cdot \sum_{k=0}^{n-1} b^{n-1-k} a^{k}
$$

for $n=2019, b=x+1, a=x-2$, the given equation leads to

$$
\frac{(x+1)^{2019}-(x-2)^{2019}}{(x+1)-(x-2)}=0,
$$

which implies, in real numbers, the absurd equation $x+1=x-2$ due to the fact that 2019 is odd. (Note that there are 2018 complex solutions, though.)
3. Let f be a continuous function on $[0,2018]$ such that $f(x) f(2018-x)=1$, for all $x \in[0,2018]$. Evaluate

$$
\int_{0}^{2018} \frac{d x}{1+f(x)}
$$

Answer. 1009.

Solution. Let

$$
I=\int_{0}^{2018} \frac{d x}{1+f(x)}
$$

Then substitution $u=2018-x$ gives

$$
I=\int_{0}^{2018} \frac{d x}{1+f(2018-x)}=\int_{0}^{2018} \frac{d x}{1+\frac{1}{f(x)}}=\int_{0}^{2018} \frac{f(x) d x}{1+f(x)}
$$

In particular,

$$
2 I=I+I=\int_{0}^{2018} \frac{d x}{1+f(x)}+\int_{0}^{2018} \frac{f(x) d x}{1+f(x)}=\int_{0}^{2018} d x=2018
$$

hence $I=2018 / 2=1009$.
4. What is the number of natural numbers n with the property that $\left[\frac{n^{2}}{3}\right]$ is a prime number? Here, $[x]$ denotes the greatest integer that is not larger than x.

Answer. 2.

Solution. Using congruence mod 3 , there are three cases: 1) $n=3 k$, so $\left[n^{2} / 3\right]=3 k^{2}$, which is not a prime, unless $k=1$ which happens when $n=3$. 2) $n=3 k-2$, so $\left[n^{2} / 3\right]=\left[3 k^{2}-4 k+1+1 / 3\right]=(3 k-1)(k-1)$, which is not a prime, unless $k=2$ which happens when $n=4$. 3) $n=3 k-1$, so $\left[n^{2} / 3\right]=\left[3 k^{2}-2 k+1 / 3\right]=k(3 k-2)$, which is never a prime. So the only solutions are $n=3,4$.
5. What is the coefficient of x^{5} in the expansion of the following polynomial?

$$
\left(1+2 x+3 x^{2}+4 x^{3}+\cdots+2018 x^{2017}\right)^{2}\left(1+x^{4}+x^{8}\right)^{2}
$$

Answer. 64.

Solution. Writing the powers of x up to x^{5} in the expansions of the expression we get

$$
\left(1+x^{4}+x^{8}\right)^{2}=1+2 x^{4}+\ldots
$$

and doing the same for the first term gives us

$$
\left(1+2 x+3 x^{2}+4 x^{3}+\cdots+2018 x^{2017}\right)^{2}=1+4 x+10 x^{2}+20 x^{3}+35 x^{4}+56 x^{5}+\ldots
$$

The only possibilities to get x^{5} from the product of the above expression is through $1\left(56 x^{5}\right)+2 x^{4}(4 x)=64 x^{5}$.

As a second solution, note that according to the expansion of $\left(1+x^{4}+x^{8}\right)^{2}$, we only need to know the coefficients x and x^{5} in the expansion of $\left(1+2 x+3 x^{2}+4 x^{3}+\cdots+2018 x^{2017}\right)^{2}$, which shares the same information with the infinite series

$$
f(x)=\left(\sum_{k=0}^{\infty} k x^{k-1}\right)^{2}=\left(\frac{d}{d x} \sum_{k=0}^{\infty} x^{k}\right)^{2}=\left(\frac{d}{d x}(1-x)^{-1}\right)^{2}=(1-x)^{-4}
$$

for $-1<x<1$. By Taylor's formula, the coefficient of x must be $f^{\prime}(0)=4$ and coefficient of x^{5} is

$$
\frac{f^{(5)}(0)}{5!}=\frac{4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{5!}=56 .
$$

6. Consider the function $f(x, y)=y^{2}-x^{2}-2 x y+2 x+1$. Jack and Janet play the following game: First, Jack plugs in a value for x, and then Janet plugs in a value for y. The value of the function will be considered as Jack's score. If Janet plays against Jack, what is the maximum score Jack can gain?

Answer. $3 / 2=1.5$.

Solution. Janet plays well if she minimize the function for the y-values given the value of x Jack has plugged in. Therefore, the solution to the problem is obtained by solving the optimization problem

$$
\max _{x} \min _{y} f(x, y) .
$$

But $f(x, y)$ is a quadratic function in y for each fixed value of x, and the coefficient of y^{2} is positive, so the function is concave up, with minimum at $y=-(-2 x) / 2(1)=x$, hence

$$
\min _{y} f(x, y)=f(x, x)=-2 x^{2}+2 x+1
$$

which is a quadratic in x that is concave down, with a maximum at $x=-2 / 2(-2)=1 / 2$, so

$$
\max _{x} \min _{y} f(x, y)=-2(1 / 2)^{2}+2(1 / 2)+1=3 / 2 .
$$

7. We say that a natural number greater than one has property S if the sum of any of its two distinct divisors is divisible by 7 . How many numbers with property S are less than 100 ?
Answer. 4.

Solution. A number n with such property cannot be composite: otherwise, it can be written as $n=a b$, with $a, b \geq 2$, and the property implies that

$$
7|1+a, 7| 1+b, 7 \mid 1+a b .
$$

The above implies

$$
7|\{(1+a)(1+b)-(1+a b)\} \Rightarrow 7|(a+b)
$$

and

$$
7|(a+1)+(b+1) \Rightarrow 7|(a+b+2),
$$

hence $7 \mid 2$, which is absurd. The only prime numbers p with property S are those satisfying $7 \mid p+1$, which upon checking we have $p \in\{13,41,83,97\}$.
8. Consider the parabola $y=x^{2}-2 a x+1$ and the line $y=2 b(a-x)$. Let A be the set of points $(a, b) \in \mathbb{R}^{2}$ such that the line and the parabola defined above do not intersect. Find the area of A as a region in \mathbb{R}^{2}.

Answer. π.

Solution. The two curves do not intersect if the quadratic equation

$$
x^{2}-2 a x+1-2 b(a-x)=0
$$

has negative discriminant, which implies

$$
(b-a)^{2}-(1-2 a b)=b^{2}+a^{2}-2 a b+2 a b-1=a^{2}+b^{2}-1<0 .
$$

This is a disk of radius 1 in the $a b$-plane, with area π.
9. For any natural number n, let $p(n)$ be the product of the digits in the decimal expansion of n. Find $p(1)+p(2)+p(3)+\cdots+p(999)$.

Answer. 93,195.

Solution. Note that based on the number of digits we have

$$
\begin{aligned}
\sum_{n=1}^{9} p(n) & =\sum_{i=1}^{9} i=45 \\
\sum_{n=10}^{99} p(n) & =\sum_{i=1}^{9} \sum_{j=0}^{9}(i \times j)=\left(\sum_{i=1}^{9} i\right)\left(\sum_{j=0}^{9} j\right)=\left(\sum_{i=1}^{9} i\right)^{2}=45^{2} \\
\sum_{n=100}^{999} p(n) & =\sum_{i=1}^{9} \sum_{j=0}^{9} \sum_{k=0}^{9}(i \times j \times k)=\left(\sum_{i=1}^{9} i\right)^{3}=45^{3}
\end{aligned}
$$

Therefore

$$
\sum_{n=1}^{999} p(n)=45+45^{2}+45^{3}=93195
$$

10. Consider a rectangular paper $A B C D$ with $A B=8, A D=6$ and a point P, the intersection of two diagonals. Remove the triangle $\triangle P A B$, and then fold $P C$ and $P D$ so that $P A$ and $P B$ are identified. Find the volume of the tetrahedron determined by the resulting piece of paper.

Answer. $\frac{16 \sqrt{11}}{3}$.
Solution. After identifying $P A$ and $P B$ we have a tetrahedron with the base triangle $\triangle A C D$. By the Pythagorean theorem, $A E=2 \sqrt{5}$ and $P E=3$. Let $\angle P E A=\alpha$. The law of cosine applied to $\triangle P A E$ yields

$$
\cos \alpha=\frac{9+20-25}{2 \cdot 3 \cdot 2 \sqrt{5}}=\frac{1}{3 \sqrt{5}} .
$$

So $\sin \alpha=\sqrt{1-\frac{1}{45}}=\frac{2 \sqrt{11}}{3 \sqrt{5}}$ implies

$$
P H=P E \cdot \sin \alpha=\frac{2 \sqrt{11}}{\sqrt{5}}
$$

The volume of the tetrahedron is

$$
\frac{1}{3} \operatorname{Area}(\triangle A C D) \cdot P H=\frac{1}{3} \cdot \frac{8 \cdot 2 \sqrt{5}}{2} \cdot \frac{2 \sqrt{11}}{\sqrt{5}}=\frac{16 \sqrt{11}}{3}
$$

11. What is the maximum value of λ such that the following inequality holds for all $a>0$?

$$
a^{3}+\frac{1}{a^{3}}-2 \geq \lambda\left(a+\frac{1}{a}-2\right)
$$

Answer. 9.

Solution. Let $x=f(a)=a+1 / a$. The domain of f is $(0, \infty)$ and its range is $[2, \infty)$, where the minimum of 2 is achieved at $a=1$; one way to view this fact is through the identity

$$
z+\frac{1}{z}=\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^{2}+2, \quad z>0
$$

In particular, for $a=1$ the inequality concerned in the problem holds for any λ. Therefore, the solution of the problem is obtained by minimizing the expression

$$
\frac{a^{3}+\frac{1}{a^{3}}-2}{a+\frac{1}{a}-2}=\frac{\left(a+\frac{1}{a}\right)^{3}-3 a \cdot \frac{1}{a}\left(a+\frac{1}{a}\right)-2}{a+\frac{1}{a}-2}=\frac{x^{3}-3 x-2}{x-2},
$$

which simplifies to $(x+1)^{2}$ via long division, and is minimized at $x=2$ in the range $[2, \infty)$ of the x-values. Consequently, the minimum of the expression is $(2+1)^{2}=9$.
12. Suppose we have

$$
\sum_{k=0}^{n-1} \sqrt[3]{\sqrt{a k^{3}+b k^{2}+c k+1}-\sqrt{a k^{3}+b k^{2}+c k}}=\sqrt{n}
$$

for all natural numbers n and some constants a, b, c. Find $a-b+c$.

Answer. 1.

Solution. For $k=0,1, \ldots$, we should have

$$
\sqrt[3]{\sqrt{a k^{3}+b k^{2}+c k+1}-\sqrt{a k^{3}+b k^{2}+c k}}=\sqrt{k+1}-\sqrt{k} .
$$

On the other hand,

$$
\begin{aligned}
(\sqrt{k+1}-\sqrt{k})^{3} & =(k+1) \sqrt{k+1}-3(k+1) \sqrt{k}+3 k \sqrt{k+1}-k \sqrt{k} \\
& =(4 k+1) \sqrt{k+1}-(4 k+3) \sqrt{k} \\
& =\sqrt{(4 k+1)^{2}(k+1)}-\sqrt{k(4 k+3)^{2}} \\
& =\sqrt{16 k^{3}+24 k^{2}+9 k+1}-\sqrt{16 k^{3}+24 k^{2}+9 k}
\end{aligned}
$$

hence

$$
\sum_{k=0}^{n-1} \sqrt[3]{\sqrt{16 k^{3}+24 k^{2}+9 k+1}-\sqrt{16 k^{3}+24 k^{2}+9 k}}=\sum_{k=0}^{n-1}(\sqrt{k+1}-\sqrt{k})=\sqrt{n}
$$

Taking $a=16, b=24, c=9$ we conclude that $a-b+c=1$. Notice that such values for a, b, c are unique because the function $\sqrt{x+1}-\sqrt{x}$ is strictly increasing, hence one-to-one, and moreover, any two polynomials that are equal at infinitely many values must be identical (in our case, polynomials of the form $x=a k^{3}+b k^{2}+c k$ are concerned).
13. In $\triangle P A T, \angle P=36^{\circ}, \angle A=56^{\circ}$, and $P A=10$. Points U and G lie on sides $\overline{T P}$ and $\overline{T A}$, respectively, so that $P U=A G=1$. Let M and N be the midpoints of segments $\overline{P A}$ and $\overline{U G}$, respectively. What is the degree measure of the acute angle formed by lines $M N$ and $P A$?

Answer. 80 degrees.

Solution. Place the figure in the coordinate plane with $P=(-5,0), M=(0,0), A=(5,0)$, and T in the first quadrant. Then

$$
U=\left(-5+\cos 36^{\circ}, \sin 36^{\circ}\right) \quad \text { and } G=\left(5-\cos 56^{\circ}, \sin 56^{\circ}\right),
$$

and the midpoint N of $U G$ is

$$
\left(\frac{1}{2}\left(\cos 36^{\circ}-\cos 56^{\circ}\right), \frac{1}{2}\left(\sin 36^{\circ}+\sin 56^{\circ}\right)\right) .
$$

The tangent of $\angle N M A$ is the slope of the line $M N$, which is calculated as follows using the sum-to-product trigonometric identities:

$$
\begin{aligned}
\tan (\angle N M A) & =\frac{\sin 36^{\circ}+\sin 56^{\circ}}{\cos 36^{\circ}-\cos 56^{\circ}} \\
& =\frac{2 \sin \frac{36^{\circ}+56^{\circ}}{2} \cos \frac{36^{\circ}-56^{\circ}}{2}}{-2 \sin \frac{36^{\circ}+56^{\circ}}{2} \sin \frac{36^{\circ}-56^{\circ}}{2}} \\
& =\frac{\cos 10^{\circ}}{\sin 10^{\circ}}=\tan 80^{\circ} .
\end{aligned}
$$

14. Evaluate the sum

$$
\sum_{k=0}^{2017}(-1)^{k} \cos ^{2018}\left(\frac{k \pi}{2018}\right)
$$

Answer. 2018/2 2^{2017} or $1009 / 2^{2016}$.

Solution. Set $\omega=e^{\pi i / 2018}$ so that $\omega^{2018}=-1$ and

$$
\begin{aligned}
S:=\sum_{k=0}^{2017}(-1)^{k} \cos ^{2018}\left(\frac{k \pi}{2018}\right) & =\sum_{k=0}^{2017}(-1)^{k}\left(\frac{\omega^{k}+\omega^{-k}}{2}\right)^{2018}=\sum_{k=0}^{2017} \omega^{2018 k}\left(\frac{\omega^{k}+\omega^{-k}}{2}\right)^{2018} \\
& =\frac{1}{2^{2018}} \sum_{k=0}^{2017}\left(\omega^{2 k}+1\right)^{2018}
\end{aligned}
$$

Using binomial formula we have

$$
\begin{aligned}
S & =\frac{1}{2^{2018}} \sum_{k=0}^{2017} \sum_{l=0}^{2018}\binom{2018}{l} \omega^{2 k l} \\
& =\frac{1}{2^{2018}} \sum_{l=0}^{2018}\binom{2018}{l} \sum_{k=0}^{2017}\left(\omega^{2 l}\right)^{k} .
\end{aligned}
$$

We note that for $l=0,2018$ we have $\left(\omega^{2 l}\right)^{k}=1$, so $\sum_{k=0}^{2017}\left(\omega^{2 l}\right)^{k}=2018$, but for $l \neq 0,2018$

$$
\sum_{k=0}^{2017}\left(\omega^{2 l}\right)^{k}=\frac{1-\left(\omega^{2 l}\right)^{2018}}{1-\omega^{2 l}}=\frac{1-\left(\omega^{2018}\right)^{2 l}}{1-\omega^{2 l}}=0
$$

Therefore, the sum reduces to two terms only:

$$
S=\frac{1}{2^{2018}}\left[\binom{2018}{0} 2018+\binom{2018}{2018} 2018\right]=\frac{2(2018)}{2^{2018}}=\frac{2018}{2^{2017}} .
$$

15. Evaluate

$$
\int_{0}^{\pi / 3} \frac{d x}{5+4 \cos (2 x)}
$$

Answer. $\pi / 18$.
Solution. Let $u=\tan x$ so that $d x=d u /\left(1+u^{2}\right)$. We also have $\cos (2 x)=\cos ^{2} x-\sin ^{2} x=\left(1-u^{2}\right) /\left(1+u^{2}\right)$. Substituting these into the integral yields

$$
\begin{aligned}
\int_{0}^{\pi / 3} \frac{d x}{5+4 \cos (2 x)}=\int_{0}^{\sqrt{3}} \frac{\frac{d u}{1+u^{2}}}{5+4\left(\frac{1-u^{2}}{1+u^{2}}\right)}= & \int_{0}^{\sqrt{3}} \frac{d u}{5\left(1+u^{2}\right)+4\left(1-u^{2}\right)}=\int_{0}^{\sqrt{3}} \frac{d u}{9+u^{2}}=\left.\frac{1}{3} \arctan \left(\frac{u}{3}\right)\right|_{0} ^{\sqrt{3}} \\
& =\frac{1}{3}\left(\frac{\pi}{6}\right)=\frac{\pi}{18}
\end{aligned}
$$

16. Evaluate the infinite series

$$
\sum_{n=1}^{\infty} \arctan \left(\frac{2}{n^{2}}\right) .
$$

Answer. $3 \pi / 4$.

Solution. We observe that, for $n \geq 2$, we have

$$
\frac{2}{n^{2}}=\frac{\frac{1}{n-1}-\frac{1}{n+1}}{1+\frac{1}{(n-1)(n+1)}},
$$

so that

$$
\arctan \left(\frac{2}{n^{2}}\right)=\arctan \left(\frac{1}{n-1}\right)-\arctan \left(\frac{1}{n+1}\right) .
$$

Consequently,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \arctan \left(\frac{2}{n^{2}}\right) & =\arctan (2)+\sum_{n=2}^{\infty}\left[\arctan \left(\frac{1}{n-1}\right)-\arctan \left(\frac{1}{n+1}\right)\right] \\
& =\arctan (2)+\lim _{N \rightarrow \infty}\left[\arctan (1)+\arctan \left(\frac{1}{2}\right)-\arctan \left(\frac{1}{N}\right)-\arctan \left(\frac{1}{N+1}\right)\right] \\
& =\frac{\pi}{4}+\arctan (2)+\arctan \left(\frac{1}{2}\right)=\frac{\pi}{4}+\frac{\pi}{2}=\frac{3 \pi}{4}
\end{aligned}
$$

17. Consider the sequence

$$
x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n} .
$$

Determine $L=\lim _{n \rightarrow \infty} x_{n}$.
Answer. $\ln (2)$.
Solution. Note that

$$
x_{n}=\sum_{i=1}^{n} \frac{1}{n+i}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}},
$$

which is a (right) Riemann sum for

$$
\int_{0}^{1} \frac{d x}{1+x}=\left.\ln (1+x)\right|_{0} ^{1}=\ln (2)-\ln (1)=\ln (2)
$$

Therefore, $L=\lim _{n \rightarrow \infty} x_{n}=\ln (2)$.
18. Evaluate the limit

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x} \cdot \int_{x}^{x+1} \sin \left(t^{2}\right) d t\right) .
$$

Answer. 0.

Solution. Let

$$
I=\int_{x}^{x+1} \sin \left(t^{2}\right) d t=\int_{x}^{x+1} \frac{2 t \sin \left(t^{2}\right)}{2 t} d t
$$

and integrate by parts to get

$$
\begin{aligned}
I & =-\left.\frac{\cos \left(t^{2}\right)}{2 t}\right|_{x} ^{x+1}-\frac{1}{2} \int_{x}^{x+1} \frac{\cos \left(t^{2}\right)}{t^{2}} d t \\
& =-\frac{\cos (x+1)^{2}}{2(x+1)}+\frac{\cos \left(x^{2}\right)}{2 x}-\frac{1}{2} \int_{x}^{x+1} \frac{\cos \left(t^{2}\right)}{t^{2}} d t
\end{aligned}
$$

so we have

$$
|I| \leq \frac{1}{2(x+1)}+\frac{1}{2 x}+\frac{1}{2} \int_{x}^{x+1} \frac{1}{t^{2}} d t=\frac{1}{2(x+1)}+\frac{1}{2 x}+\left.\frac{1}{2}\left(-\frac{1}{t}\right)\right|_{x} ^{x+1}=\frac{1}{x}
$$

Consequently,

$$
\left|\sqrt{x} \cdot \int_{x}^{x+1} \sin \left(t^{2}\right) d t\right| \leq \frac{\sqrt{x}}{x},
$$

thus, by Squeeze Theorem, we have

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x} \cdot \int_{x}^{x+1} \sin \left(t^{2}\right) d t\right)=0
$$

19. Evaluate the following sum.

$$
1-\frac{2^{3}}{1!}+\frac{3^{3}}{2!}-\frac{4^{3}}{3!}+\ldots
$$

Answer. $-1 / e$.

Solution. Our goal is to find the sum

$$
S=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)^{3}}{n!}
$$

We have $(n+1)^{3}=n(n-1)(n-2)+6 n(n-1)+7 n+1$, where the coefficients may simply be obtained by substituting $n=0,1,2,3$. Therefore,

$$
\begin{aligned}
S & =\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{n(n-1)(n-2)+6 n(n-1)+7 n+1}{n!} \\
& =\sum_{n=3}^{\infty} \frac{(-1)^{n}}{(n-3)!}+6 \sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!}+7 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n-1)!}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \\
& =-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}+6 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}-7 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \\
& =-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}=-\frac{1}{e},
\end{aligned}
$$

using the Maclaurin expansion of e^{x}.

