Let us denote by $f(n, t)$ the mass of the particle at coordinate $n$ at moment $t$. We use the standard notation $\binom{n}{k}$ for the binomial coefficients

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} .
$$

We assume that $\binom{n}{k}=0$ if $k$ is not an integer. We also assume that $\binom{n}{k}=0$ for all integers $k>n$ and $k<0$.
Problem 1. We have initially $f(n, 0)=\left\{\begin{array}{ll}1 & \text { for } n=0, \\ 0 & \text { for } n \neq 0 .\end{array}\right.$. The conditions of the problem are equivalent to the following recurrent rule:

$$
f(n, t+1)=(f(n-1, t)+f(n+1, t)) / 2 .
$$

Consider the function $F_{t}(s)=\sum_{n=-\infty}^{\infty} f(n, t) s^{n}$. The recurrent rule is then equivalent to the relation $F_{t+1}(s)=\frac{s^{-1}+s}{2} F_{t}(s)$.

Since we have $F_{0}(s)=1$, we get $F_{t}(s)=\frac{\left(s^{2}+s\right)^{t}}{2^{t}}$. Therefore, $f(n, t)$ is the coefficient at $s^{n}$ of $\left(s^{-1}+s\right)^{t}$ divided by $2^{t}$. If we write $n=k_{1}-k_{2}$ so that $k_{1}+k_{2}=t$, then we get from the binomial formula $f(n, t)=\binom{t}{k_{1}}$. It follows that

$$
f(n, t)= \begin{cases}\frac{1}{2^{t}}\binom{t}{(n+t) / 2} & \text { if }(n+t) / 2 \text { is a non-negative integer, } \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2. The masses of the particles in Problem 1 are equal to $2^{-t}$ times the numbers paths from the top black vertex $O$ to the corresponding points $A$ of the graph. For example, the mass $f(n, t)$ at point at coordinate $n=2$ and moment $t=14$ is $2^{-14}$ times the number of paths from $O$ to the point $A$ shown on the figure, since in order to reach $A$ from $O$ one has to make 8 steps to the right and 6 steps to the left.

The masses of the particles for Problem 2 are equal then $2^{-t}$ times the number of paths from $O$ to $A$ that do not touch the vertical line placed at coordinate $k$, like the one drawn on the following figure for $k=4$.


For every path from $O$ to $A$ that touches the line, take the first point $P$ when the path is on the line and reflect the part $O P$ of the path with respect to the vertical line. We will get a path starting in the vertex $O^{\prime}$ at coordinate $2 k$. Note that every path starting in $O^{\prime}$ and ending to the left side of the vertical line must touch the vertical line. We get for every point $A$ with coordinate $\leq k$, a one-to-one correspondence between the set of paths from $O^{\prime}$ to $A$ and the set of paths from $O$ to $A$ that touch the vertical line at coordinate $k$.

It follows that the number of paths from $O$ to $A$ not touching the vertical line is equal to the number of paths from the $O$ to $A$ minus the number of paths from $O^{\prime}$ to $A$. Therefore, the answer to the problem is

$$
2^{-t}\binom{t}{(n+t) / 2}-2^{-t}\binom{t}{(n+t) / 2-k}
$$

if $(n+t) / 2 \in \mathbb{Z}$ and $n \leq k$, and 0 otherwise.
Another interpretation of the solution. Put at the initial moment a particle of mass 1 in the point $O$ with coordinate 0 and a particle of mass -1 in the point $O^{\prime}$ with coordinate $2 k$. The rules of the evolution is the same as before.

Since the rules and the initial condition is symmetric with respect to the reflection with respect to the coordinate $k$ (where the reflection also changes the sign of mass), the mass of the particle at coordinate $k$ is always equal to zero. It follows that if we restrict the function $f(n, t)$ of the mass to the points of coordinates $n \leq k$, then the rule of the change of mass is exactly as in Problem 2. But then it is clear that the mass of a point $A$ at moment $t$ is $2^{-t}$ times the number of paths from $O$ to $A$ minus the number of paths from $O^{\prime}$ to $A$, like in the first solution.

Problem 3 We are using the ideas of the second solution of the previous problem but now we put two "mirrors": one at coordinate $k$ and another at coordinate $l$. Namely, we put particles of masses 1 in points of coordinates of the form $2 m k-2 m l$ for all $m \in \mathbb{Z}$, and particles of masses -1 in points of coordinates $2(m+1) k-2 m l$ for all $m \in \mathbb{Z}$. Reflections with respect to $k$ and $l$ are $x \mapsto 2 k-x$ and $x \mapsto 2 l-x$, respectively. A point $2 m k-2 m l$ is mapped by the first reflection to $2 k-2 m k+2 m l=2(-m+1) k-2(-m) l$ and by the second one to $2 l-$ $2 m k+2 m l=2(-m) k-2(-m-1) l$. A point $2(m+1) k-2 m l$ is mapped by the first reflection to $2 k-2(m+1) k+2 m l=2(-m) k-2(-m) l$ and by the second one to $2 l-2(m+1) k+2 m l=2(-m-1) k-2(-m-1) l$. We see that both reflections move the set of particles of mass 1 to the set of particles of mass -1 and vice versa. In particular, the masses of the particle at the points $k$ and $l$ are always equal to zero.

Consequently, by the same arguments as in Problem 2, we get that the answer can be written as

$$
2^{-t} \sum_{m \in \mathbb{Z}}\binom{t}{\frac{n+t}{2}-m k+m l}-2^{-t} \sum_{m \in \mathbb{Z}}\binom{t}{\frac{n+t}{2}-(m+1) k+m l}
$$

Note that both sums are actually finite for every value of $(n, t)$.

Problem 4. We will again use the method of "trajectories" from the previous problems. Reflective screen can be interpreted as counting paths in a graph of the form

or

depending on parity of $t$. The answer to the problem will be again $2^{-t}$ times the number of paths from $O$ to the corresponding point $A$.

We can replace the above graphs by the graphs

and


Consider now the following graph, where $O^{\prime}$ is the point at coordinate $2 k$.


The function $F(A)$ on the set of vertices $A$ equal to the number of paths from the set $\left\{O, O^{\prime}\right\}$ to $A$ (where, as before, the edges are directed down) is symmetric with respect to the dashed line (at coordinate $k$ ). In particular, the value of $F$ at the lower end of the highlighted edges are double of the value at their higher end. It follows that $F(A)$ for $A$ to the left of the axis of symmetry is equal to the number of paths in the two graphs on the previous figures, except for the case when the vertex $A$ is on the axis, when the number of paths is $F(A) / 2$.

It follows that the answer to Problem 4 is

$$
\begin{cases}\left.2^{-t}\binom{t}{\binom{t}{t} / 2}+\binom{t}{(n+t) / 2-k}\right) & \text { if }(n+t) / 2 \in \mathbb{Z} \text { and } n<k, \\ 2^{-t}\binom{t}{(k+t) / 2} & \text { if }(n+t) / 2 \in \mathbb{Z} \text { and } n=k, \\ 0 & \text { otherwise. }\end{cases}
$$

Problem 5. Let $f(n, t)$ be the answer to Problem 1, and let $g(n, t)$ be the answer to Problem 4. We have then $f(0,0)=g(0,0)=1$ and $f(n, 0)=g(n, 0)=0$ for all $n \neq 0$. The corresponding conditions of the problems also give us

$$
f(n, t+1)=\frac{1}{2}(f(n-1, t)+f(n+1, t))
$$

for all $n$, and

$$
\begin{equation*}
g(n, t+1)=\frac{1}{2}(g(n-1, t)+g(n+1, t)) \tag{1}
\end{equation*}
$$

for $n<k-1$,

$$
g(k-1, t+1)=g(k, t)+\frac{1}{2} g(k-2, t), \quad g(k, t+1)=\frac{1}{2} g(k-1, t),
$$

and $g(n, t)=0$ for all $n>k$.
In particular (1) holds for all $n$ not equal to $k-1$ or $k+1$. Note also that, according to the answers to the problems, we have $f(k, t)=$ $g(k, t)$.

Consider the function $h(n, t)=2 q \cdot f(n, t)+(p-q) \cdot g(n, t)$. Since $2 q+p-q=p+q=1$, we have $h(0,0)=1$ and $h(n, 0)=0$ for $n \neq 0$. We also have $h(k, t)=f(k, t)=g(k, t)$ for all $t$.

If $n \neq k-1$ and $n \neq k+1$, then

$$
\begin{aligned}
& h(n, t+1)=2 q \cdot f(n, t+1)+(p-q) \cdot g(n, t+1)= \\
& 2 q \cdot \frac{1}{2}(f(n-1, t)+f(n+1, t))+(p-q) \cdot \\
& \frac{1}{2}(g(n-1, t)+g(n+1, t))= \\
& \frac{1}{2}(h(n-1, t)+h(n+1, t))
\end{aligned}
$$

For $n=k-1$, we have

$$
\begin{array}{r}
h(k-1, t+1)=2 q \cdot f(k-1, t+1)+(p-q) \cdot g(k-1, t+1)= \\
2 q \cdot \frac{1}{2}(f(k-2, t)+f(k, t))+(p-q) \cdot\left(\frac{1}{2} g(k-2, t)+g(k, t)\right)= \\
\frac{1}{2}(2 q \cdot f(k-2, t)+(p-q) \cdot g(k-2, t))+q \cdot f(k, t)+(p-q) \cdot g(k, t)= \\
\frac{1}{2} h(k-2, t)+p \cdot h(k, t) .
\end{array}
$$

For $n=k+1$, we have

$$
\begin{gathered}
h(k+1, t+1)=2 q \cdot f(k+1, t+1)+(p-q) \cdot g(k+1, t+1)= \\
2 q \cdot \frac{1}{2}(f(k, t)+f(k+2, t))= \\
q f(k, t)+\frac{1}{2}(2 q \cdot f(k+2, t)+(p-q) \cdot g(k+2, t))= \\
q h(k, t)+\frac{1}{2} h(k+2, t),
\end{gathered}
$$

which agrees with the conditions of the problem, so the answer is

$$
\begin{cases}2^{-t}\binom{t}{(n+t) / 2}+(p-q) \cdot 2^{-t}\binom{t}{(n+t) / 2-k} & \text { if }(n+t) / 2 \in \mathbb{Z}, \text { and } n<k, \\ 2^{-t}\binom{t}{(k+t) / 2} & \text { if }(n+t) / 2 \in \mathbb{Z} \text { and } n=k, \\ 2 q \cdot 2^{-t}\binom{t}{(n+t) / 2} & \text { if }(n+t) / 2 \in \mathbb{Z} \text { and } n>k, \\ 0 & \text { otherwise. }\end{cases}
$$

Problem 6. For $n=2$ the answer is obviously $\sqrt{2}$ with the two points
in the opposite corners of the square.
For $n=4$, the set of vertices of the square is a configuration $S$ with $\operatorname{sd}(S)=1$. Suppose that there is a configuration with $\operatorname{sd}(S)>$ 1. Then the distance between any two vertices is more than 1 . If a triangle has two sides of length $>1$ and angle between them $\geq 90^{\circ}$, then by Theorem of Cosines, the third side has length greater than $\sqrt{2}$. Consequently, every triangle with vertices a subset of $S$ is acute. But it is clearly impossible. If the points of $S$ are vertices of a convex quadrilateral, then their sum is $360^{\circ}$, so one of them has at least $90^{\circ}$. If they form a triangle with a point inside it, then the sum of angles formed by the interior point and two points of the triangle is also $360^{\circ}$, so one of them is at least $120^{\circ}$. Consequently, $d_{4}=1$.

For $n=5$, we have a configuration with $\operatorname{sd}(S)=\sqrt{2} / 2$ : take four vertices of the square and the center. Let us show that it is optimal. Divide the square into four squares with side $1 / 2$ in the usual way. Since we have 5 points, there will exist two vertices belonging to one square (or its boundary). But distance between any two points of a square with side $1 / 2$ is at most $\sqrt{2} / 2$. Hence, in any configuration of five points there will be two points on distance at most $\sqrt{2} / 2$ from each other.

Problem 7. Let us prove that $d_{3}=\sqrt{2}(\sqrt{3}-1)$. A configuration with this value is shown on the following figure for $x=y=2-\sqrt{3}$.


We can check that then $A P_{1}=A P_{2}$ are equal to $\sqrt{1+x^{2}}=\sqrt{1+(2-\sqrt{3})^{2}}=$ $\sqrt{1+4-4 \sqrt{3}+3}=\sqrt{8-4 \sqrt{3}}=\sqrt{2} \sqrt{4-2 \sqrt{3}}=\sqrt{2} \sqrt{3-2 \sqrt{3}+1}=$ $\sqrt{2}(\sqrt{3}-1)$. The length of $P_{1} P_{2}$ is then $(1-x) \sqrt{2}=(1-2+\sqrt{3}) \sqrt{2}=$ $\sqrt{2}(\sqrt{3}-1)$. So $A P_{1} P_{2}$ is an equilateral triangle with sides of length $\sqrt{2}(\sqrt{3}-1)$.

Consider a triangle $\triangle X Y Z$. Let $X H$ be its height (i.e., $X H$ is perpedicular to $Y Z)$. It follows from the Pythagoras Theorem, that if we move $X$ to a point on $X H$ outside of $\triangle X Y Z$ (and on the same side of $Y Z$ as $X$ ) then two sides of $\triangle X Y Z$ will become longer, and one side will remain the same.

It follows that in an optimal configuration $S$ consisting of three points, all points must be on the boundary of the square, since otherwise we can increase the lengths of the sides.

If none of the points of $S$ is a vertex of the square, then there is a side $A B$ of the square not containing points of $S$. It will be a side of a trapezoid $A B P_{1} P_{2}$ for $P_{1}, P_{2}$ from $S$, with two right angles $P_{2} A B$ and $P_{1} B A$, see the figure below. One of the angles $A P_{2} P_{1}$ or $P_{2} P_{1} B$ is right or obtuse, since their sum is $180^{\circ}$. Suppose that it is $A P_{2} P_{1}$. Then replacing $P_{2}$ by $A$, we will increase two sides of the triangle formed by the points of $S$ and not change the third one. Consequently, $S$ can not be an optimal configuration in this case.


Consequently, one of the points of an optimal configuration $S$ is a vertex of the square. Let $A$ be this vertex of the square, as on the figure above. Suppose that all distances in $S$ are greater than $\sqrt{2}(\sqrt{3}-1)$. Then the other two points of $S$ can not be on the sides of the square adjacent to $A$. Consequently, the configuration is such as on the figure above. Then we have $\sqrt{1+x^{2}}>\sqrt{2}(\sqrt{3}-1)$, hence $1+x^{2}>2(4-2 \sqrt{3})$, so $x^{2}>7-4 \sqrt{3}=4-4 \sqrt{3}+3=(2-\sqrt{3})^{2}$, so $x>2-\sqrt{3}$. By the same argument, $y>2-\sqrt{3}$. But then $P_{1} P_{2}=\sqrt{(1-x)^{2}+(1-y)^{2}}<\sqrt{2}(1-(2-\sqrt{3}))=\sqrt{2}(\sqrt{3}-1)$, which is a contradiction.

## Problem 8.

The optimal configurations are shown on the following figure, where the blue segments show the minimal distances.


Let us compute $x=d_{n}$ in these cases.
Consider the case $n=6$. Let $2 x$ be the length of the longer segment into which the vertical sides of the square are subdivided by points of $S$. Then $s d(S)=\sqrt{1 / 4+x^{2}}$ and $s d(S)=\sqrt{1 / 4+(1-2 x)^{2}}$. It follows that $x^{2}=(1-2 x)^{2}$, hence $3 x^{2}-4 x+1=0$. Solving the equation (and taking into account that $x \neq 1$ ), we get $x=1 / 3$. Consequently, we have $\operatorname{sd}(S)$ for our configuration equal to $\sqrt{1 / 4+1 / 9}=\sqrt{13} / 6$.

Consider now the case $n=8$. Let $h$ be the distance from one of the four internal points to the closest side. Then $s d(S)=\sqrt{1 / 4+h^{2}}$ (from the triangle formed by the point and the closest side) and $s d(S)=$ $(1-2 h) / \sqrt{2}$ (from the small square formed by the internal points). Consequently, $1 / 4+h^{2}=(1-2 h)^{2} / 4$, which gives us quadratic equation $4 h^{2}-8 h+1=0$, hence $h=1-\sqrt{3} / 2$. Consequently, $s d(S)=(1-$ $2 h) / \sqrt{2}=(\sqrt{3}-1) / \sqrt{2}=(\sqrt{6}-\sqrt{2}) / 2$.

Problem 9. Assuming $k$ is large enough, we are going to beat the number $\operatorname{sd}\left(S_{k}\right)=1 / k$ by selecting $(k+1)^{2}$ points in a triangular grid. Let $\epsilon=1 /(k-1)$ and consider a triangular grid such that points $(0,0)$ and $(\epsilon, 0)$ are neighboring vertices. All vertices of that grid have coordinates of the form ( $m_{1} \epsilon / 2, m_{2} \epsilon \sqrt{3} / 2$ ), where $m_{1}$ and $m_{2}$ are arbitrary integers of the same parity (that is, either both even or both odd). By construction, the minimal distance between vertices in the grid is $\epsilon$.

Since $\epsilon>1 / k$, we only need to show that at least $(k+1)^{2}$ of those vertices fit inside the square $Q$.

A point ( $m_{1} \epsilon / 2, m_{2} \epsilon \sqrt{3} / 2$ ) belongs to the square $Q$ if $0 \leq m_{1} \epsilon / 2 \leq 1$ and $0 \leq m_{2} \epsilon \sqrt{3} / 2 \leq 1$. Equivalently, if $0 \leq m_{1} \leq 2(k-1)$ and $0 \leq m_{2} \leq 2(k-1) / \sqrt{3}$. There are $k$ possibilities for $m_{1}$ to be an even integer and $k-1$ possibilities to be an odd integer. Further, let $k_{1}=\lfloor(k-1) / \sqrt{3}\rfloor$. Then $2 k_{1} \leq 2(k-1) / \sqrt{3}$. Hence there are at least $k_{1}+1$ possibilities for $m_{2}$ to be an even integer and at least $k_{1}$ possibilities to be an odd integer.

By the above the number of vertices of the triangular grid that fit inside the square $Q$ is at least $k\left(k_{1}+1\right)+(k-1) k_{1}$. Note that $k_{1}>$ $((k-1) / \sqrt{3})-1$. Therefore

$$
\begin{gathered}
k\left(k_{1}+1\right)+(k-1) k_{1}>k \frac{k-1}{\sqrt{3}}+(k-1)\left(\frac{k-1}{\sqrt{3}}-1\right)= \\
\frac{2}{\sqrt{3}} k^{2}-(1+\sqrt{3}) k+\left(1+\frac{1}{\sqrt{3}}\right)> \\
\frac{2}{\sqrt{3}} k^{2}-(2 \sqrt{3}) k+\frac{2}{\sqrt{3}}= \\
\frac{2}{\sqrt{3}}(k+1)^{2}-\frac{10}{\sqrt{3}} k=\frac{2}{\sqrt{3}}(k+1)^{2}\left(1-\frac{5 k}{(k+1)^{2}}\right) .
\end{gathered}
$$

Since $2 / \sqrt{3}>1$ and $5 k /(k+1)^{2} \rightarrow 0$ as $k \rightarrow \infty$, it follows that $k\left(k_{1}+1\right)+(k-1) k_{1} \geq(k+1)^{2}$ if $k$ is sufficiently large.

