
Let us denote by f(n, t) the mass of the particle at coordinate n at
moment t. We use the standard notation

(
n
k

)
for the binomial coeffi-

cients (
n

k

)
=

n!

k!(n− k)!
=
n(n− 1)(n− 2) . . . (n− k + 1)

k!
.

We assume that
(
n
k

)
= 0 if k is not an integer. We also assume that(

n
k

)
= 0 for all integers k > n and k < 0.

Problem 1. We have initially f(n, 0) =

{
1 for n = 0,
0 for n 6= 0.

. The condi-

tions of the problem are equivalent to the following recurrent rule:

f(n, t+ 1) = (f(n− 1, t) + f(n+ 1, t))/2.

Consider the function Ft(s) =
∑∞

n=−∞ f(n, t)sn. The recurrent rule is

then equivalent to the relation Ft+1(s) = s−1+s
2

Ft(s).

Since we have F0(s) = 1, we get Ft(s) = (s−1+s)t

2t
. Therefore, f(n, t) is

the coefficient at sn of (s−1+s)t divided by 2t. If we write n = k1−k2 so
that k1 + k2 = t, then we get from the binomial formula f(n, t) =

(
t
k1

)
.

It follows that

f(n, t) =

{
1
2t

(
t

(n+t)/2

)
if (n+ t)/2 is a non-negative integer,

0 otherwise.

Problem 2. The masses of the particles in Problem 1 are equal
to 2−t times the numbers paths from the top black vertex O to the
corresponding points A of the graph. For example, the mass f(n, t) at
point at coordinate n = 2 and moment t = 14 is 2−14 times the number
of paths from O to the point A shown on the figure, since in order to
reach A from O one has to make 8 steps to the right and 6 steps to the
left.

The masses of the particles for Problem 2 are equal then 2−t times
the number of paths from O to A that do not touch the vertical line
placed at coordinate k, like the one drawn on the following figure for
k = 4.
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For every path from O to A that touches the line, take the first point
P when the path is on the line and reflect the part OP of the path with
respect to the vertical line. We will get a path starting in the vertex
O′ at coordinate 2k. Note that every path starting in O′ and ending
to the left side of the vertical line must touch the vertical line. We get
for every point A with coordinate ≤ k, a one-to-one correspondence
between the set of paths from O′ to A and the set of paths from O to
A that touch the vertical line at coordinate k.

It follows that the number of paths from O to A not touching the
vertical line is equal to the number of paths from the O to A minus the
number of paths from O′ to A. Therefore, the answer to the problem
is

2−t
(

t

(n+ t)/2

)
− 2−t

(
t

(n+ t)/2− k

)

if (n+ t)/2 ∈ Z and n ≤ k, and 0 otherwise.
Another interpretation of the solution. Put at the initial moment
a particle of mass 1 in the point O with coordinate 0 and a particle of
mass −1 in the point O′ with coordinate 2k. The rules of the evolution
is the same as before.

Since the rules and the initial condition is symmetric with respect
to the reflection with respect to the coordinate k (where the reflection
also changes the sign of mass), the mass of the particle at coordinate
k is always equal to zero. It follows that if we restrict the function
f(n, t) of the mass to the points of coordinates n ≤ k, then the rule of
the change of mass is exactly as in Problem 2. But then it is clear that
the mass of a point A at moment t is 2−t times the number of paths
from O to A minus the number of paths from O′ to A, like in the first
solution.

Problem 3 We are using the ideas of the second solution of the pre-
vious problem but now we put two “mirrors”: one at coordinate k and
another at coordinate l. Namely, we put particles of masses 1 in points
of coordinates of the form 2mk − 2ml for all m ∈ Z, and particles of
masses −1 in points of coordinates 2(m + 1)k − 2ml for all m ∈ Z.
Reflections with respect to k and l are x 7→ 2k − x and x 7→ 2l − x,
respectively. A point 2mk − 2ml is mapped by the first reflection to
2k−2mk+2ml = 2(−m+1)k−2(−m)l and by the second one to 2l−
2mk+2ml = 2(−m)k−2(−m−1)l. A point 2(m+1)k−2ml is mapped
by the first reflection to 2k−2(m+1)k+2ml = 2(−m)k−2(−m)l and
by the second one to 2l−2(m+1)k+2ml = 2(−m−1)k−2(−m−1)l.
We see that both reflections move the set of particles of mass 1 to the
set of particles of mass −1 and vice versa. In particular, the masses of
the particle at the points k and l are always equal to zero.



Consequently, by the same arguments as in Problem 2, we get that
the answer can be written as

2−t
∑
m∈Z

(
t

n+t
2
−mk +ml

)
− 2−t

∑
m∈Z

(
t

n+t
2
− (m+ 1)k +ml

)

Note that both sums are actually finite for every value of (n, t).

Problem 4. We will again use the method of “trajectories” from the
previous problems. Reflective screen can be interpreted as counting
paths in a graph of the form

or

depending on parity of t. The answer to the problem will be again 2−t

times the number of paths from O to the corresponding point A.
We can replace the above graphs by the graphs



and

Consider now the following graph, where O′ is the point at coordinate
2k.

The function F (A) on the set of vertices A equal to the number of
paths from the set {O,O′} to A (where, as before, the edges are directed
down) is symmetric with respect to the dashed line (at coordinate k).
In particular, the value of F at the lower end of the highlighted edges
are double of the value at their higher end. It follows that F (A) for A
to the left of the axis of symmetry is equal to the number of paths in
the two graphs on the previous figures, except for the case when the
vertex A is on the axis, when the number of paths is F (A)/2.



It follows that the answer to Problem 4 is
2−t
((

t
(n+t)/2

)
+
(

t
(n+t)/2−k

))
if (n+ t)/2 ∈ Z and n < k,

2−t
(

t
(k+t)/2

)
if (n+ t)/2 ∈ Z and n = k,

0 otherwise.

Problem 5. Let f(n, t) be the answer to Problem 1, and let g(n, t)
be the answer to Problem 4. We have then f(0, 0) = g(0, 0) = 1 and
f(n, 0) = g(n, 0) = 0 for all n 6= 0. The corresponding conditions of
the problems also give us

f(n, t+ 1) =
1

2
(f(n− 1, t) + f(n+ 1, t))

for all n, and

(1) g(n, t+ 1) =
1

2
(g(n− 1, t) + g(n+ 1, t))

for n < k − 1,

g(k − 1, t+ 1) = g(k, t) +
1

2
g(k − 2, t), g(k, t+ 1) =

1

2
g(k − 1, t),

and g(n, t) = 0 for all n > k.
In particular (1) holds for all n not equal to k − 1 or k + 1. Note

also that, according to the answers to the problems, we have f(k, t) =
g(k, t).

Consider the function h(n, t) = 2q · f(n, t) + (p − q) · g(n, t). Since
2q + p− q = p+ q = 1, we have h(0, 0) = 1 and h(n, 0) = 0 for n 6= 0.
We also have h(k, t) = f(k, t) = g(k, t) for all t.

If n 6= k − 1 and n 6= k + 1, then

h(n, t+ 1) = 2q · f(n, t+ 1) + (p− q) · g(n, t+ 1) =

2q · 1
2

(f(n− 1, t) + f(n+ 1, t)) + (p− q) · 1
2

(g(n− 1, t) + g(n+ 1, t)) =

1

2
(h(n− 1, t) + h(n+ 1, t)).

For n = k − 1, we have

h(k − 1, t+ 1) = 2q · f(k − 1, t+ 1) + (p− q) · g(k − 1, t+ 1) =

2q · 1

2
(f(k − 2, t) + f(k, t)) + (p− q) ·

(
1

2
g(k − 2, t) + g(k, t)

)
=

1

2
(2q · f(k − 2, t) + (p− q) · g(k − 2, t)) + q · f(k, t) + (p− q) · g(k, t) =

1

2
h(k − 2, t) + p · h(k, t).



For n = k + 1, we have

h(k + 1, t+ 1) = 2q · f(k + 1, t+ 1) + (p− q) · g(k + 1, t+ 1) =

2q · 1

2
(f(k, t) + f(k + 2, t)) =

qf(k, t) +
1

2
(2q · f(k + 2, t) + (p− q) · g(k + 2, t)) =

qh(k, t) +
1

2
h(k + 2, t),

which agrees with the conditions of the problem, so the answer is


2−t
(

t
(n+t)/2

)
+ (p− q) · 2−t

(
t

(n+t)/2−k

)
if (n+ t)/2 ∈ Z, and n < k,

2−t
(

t
(k+t)/2

)
if (n+ t)/2 ∈ Z and n = k,

2q · 2−t
(

t
(n+t)/2

)
if (n+ t)/2 ∈ Z and n > k,

0 otherwise.

Problem 6. For n = 2 the answer is obviously
√

2 with the two points

in the opposite corners of the square.
For n = 4, the set of vertices of the square is a configuration S

with sd(S) = 1. Suppose that there is a configuration with sd(S) >
1. Then the distance between any two vertices is more than 1. If a
triangle has two sides of length > 1 and angle between them ≥ 90◦,
then by Theorem of Cosines, the third side has length greater than√

2. Consequently, every triangle with vertices a subset of S is acute.
But it is clearly impossible. If the points of S are vertices of a convex
quadrilateral, then their sum is 360◦, so one of them has at least 90◦.
If they form a triangle with a point inside it, then the sum of angles
formed by the interior point and two points of the triangle is also 360◦,
so one of them is at least 120◦. Consequently, d4 = 1.

For n = 5, we have a configuration with sd(S) =
√

2/2: take four
vertices of the square and the center. Let us show that it is optimal.
Divide the square into four squares with side 1/2 in the usual way.
Since we have 5 points, there will exist two vertices belonging to one
square (or its boundary). But distance between any two points of a
square with side 1/2 is at most

√
2/2. Hence, in any configuration of

five points there will be two points on distance at most
√

2/2 from each
other.

Problem 7. Let us prove that d3 =
√

2(
√

3−1). A configuration with
this value is shown on the following figure for x = y = 2−

√
3.



We can check that thenAP1 = AP2 are equal to
√

1 + x2 =
√

1 + (2−
√

3)2 =√
1 + 4− 4

√
3 + 3 =

√
8− 4

√
3 =
√

2
√

4− 2
√

3 =
√

2
√

3− 2
√

3 + 1 =√
2(
√

3−1). The length of P1P2 is then (1−x)
√

2 = (1−2+
√

3)
√

2 =√
2(
√

3 − 1). So AP1P2 is an equilateral triangle with sides of length√
2(
√

3− 1).
Consider a triangle 4XY Z. Let XH be its height (i.e., XH is

perpedicular to Y Z). It follows from the Pythagoras Theorem, that
if we move X to a point on XH outside of 4XY Z (and on the same
side of Y Z as X) then two sides of 4XY Z will become longer, and
one side will remain the same.

It follows that in an optimal configuration S consisting of three
points, all points must be on the boundary of the square, since other-
wise we can increase the lengths of the sides.

If none of the points of S is a vertex of the square, then there is a
side AB of the square not containing points of S. It will be a side of a
trapezoid ABP1P2 for P1, P2 from S, with two right angles P2AB and
P1BA, see the figure below. One of the angles AP2P1 or P2P1B is right
or obtuse, since their sum is 180◦. Suppose that it is AP2P1. Then
replacing P2 by A, we will increase two sides of the triangle formed by
the points of S and not change the third one. Consequently, S can not
be an optimal configuration in this case.



Consequently, one of the points of an optimal configuration S is
a vertex of the square. Let A be this vertex of the square, as on
the figure above. Suppose that all distances in S are greater than√

2(
√

3 − 1). Then the other two points of S can not be on the sides
of the square adjacent to A. Consequently, the configuration is such
as on the figure above. Then we have

√
1 + x2 >

√
2(
√

3 − 1), hence
1 + x2 > 2(4 − 2

√
3), so x2 > 7 − 4

√
3 = 4 − 4

√
3 + 3 = (2 −

√
3)2,

so x > 2 −
√

3. By the same argument, y > 2 −
√

3. But then
P1P2 =

√
(1− x)2 + (1− y)2 <

√
2(1 − (2 −

√
3)) =

√
2(
√

3 − 1),
which is a contradiction.

Problem 8.
The optimal configurations are shown on the following figure, where

the blue segments show the minimal distances.

Let us compute x = dn in these cases.
Consider the case n = 6. Let 2x be the length of the longer segment

into which the vertical sides of the square are subdivided by points of S.
Then sd(S) =

√
1/4 + x2 and sd(S) =

√
1/4 + (1− 2x)2. It follows

that x2 = (1− 2x)2, hence 3x2− 4x+ 1 = 0. Solving the equation (and
taking into account that x 6= 1), we get x = 1/3. Consequently, we

have sd(S) for our configuration equal to
√

1/4 + 1/9 =
√

13/6.
Consider now the case n = 8. Let h be the distance from one of the

four internal points to the closest side. Then sd(S) =
√

1/4 + h2 (from
the triangle formed by the point and the closest side) and sd(S) =
(1 − 2h)/

√
2 (from the small square formed by the internal points).

Consequently, 1/4+h2 = (1−2h)2/4, which gives us quadratic equation
4h2 − 8h + 1 = 0, hence h = 1 −

√
3/2. Consequently, sd(S) = (1 −

2h)/
√

2 = (
√

3− 1)/
√

2 = (
√

6−
√

2)/2.

Problem 9. Assuming k is large enough, we are going to beat the
number sd(Sk) = 1/k by selecting (k + 1)2 points in a triangular grid.
Let ε = 1/(k− 1) and consider a triangular grid such that points (0, 0)
and (ε, 0) are neighboring vertices. All vertices of that grid have coor-
dinates of the form (m1ε/2,m2ε

√
3/2), where m1 and m2 are arbitrary

integers of the same parity (that is, either both even or both odd). By
construction, the minimal distance between vertices in the grid is ε.



Since ε > 1/k, we only need to show that at least (k + 1)2 of those
vertices fit inside the square Q.

A point (m1ε/2,m2ε
√

3/2) belongs to the square Q if 0 ≤ m1ε/2 ≤ 1
and 0 ≤ m2ε

√
3/2 ≤ 1. Equivalently, if 0 ≤ m1 ≤ 2(k − 1) and

0 ≤ m2 ≤ 2(k − 1)/
√

3. There are k possibilities for m1 to be an
even integer and k − 1 possibilities to be an odd integer. Further, let
k1 = b(k − 1)/

√
3c. Then 2k1 ≤ 2(k − 1)/

√
3. Hence there are at

least k1 + 1 possibilities for m2 to be an even integer and at least k1
possibilities to be an odd integer.

By the above the number of vertices of the triangular grid that fit
inside the square Q is at least k(k1 + 1) + (k − 1)k1. Note that k1 >
((k − 1)/

√
3)− 1. Therefore

k(k1 + 1) + (k − 1)k1 > k
k − 1√

3
+ (k − 1)

(
k − 1√

3
− 1

)
=

2√
3
k2 − (1 +

√
3)k +

(
1 +

1√
3

)
>

2√
3
k2 − (2

√
3)k +

2√
3

=

2√
3

(k + 1)2 − 10√
3
k =

2√
3

(k + 1)2
(

1− 5k

(k + 1)2

)
.

Since 2/
√

3 > 1 and 5k/(k + 1)2 → 0 as k → ∞, it follows that
k(k1 + 1) + (k − 1)k1 ≥ (k + 1)2 if k is sufficiently large.


