Getting Close to Sets

We will use \mathbf{R} to denote the set of real numbers and \mathbf{N} to denote the set of natural numbers. Sometimes real numbers are called scalars. Whenever A is a set, we will write $x \in A$ to say " x is an element of A." If A and B are sets we will write $A \subset B$ to say " A is a subset of B." If A and B are sets then we define

$$
A \backslash B=\{x \mid x \in A \text { and } x \notin B\} .
$$

We say that a set A is finite if there is a natural number n and elements x_{i} in A for every natural number $i \leq n$ so that

$$
A=\left\{x_{i} \mid i \in \mathbf{N} \text { and } i \leq n\right\}
$$

For example, the set $A=\{-1,2,5,7,234\}$ is a finite set, but \mathbf{N} is not a finite set.

Definition 1 Let A and B be subsets of \mathbf{R} and suppose $\varepsilon>0$. We say that A is within ε of B if and only if there exist $n \in \mathbf{N}$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subset A$ so that for every number $x \in A \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ there is a number $u \in B$ (dependent upon $x)$ so that $|x-u| \leq \varepsilon$. We use the notation $(A, B) \leq \varepsilon$ to denote the statement " A is within ε of B ". In addition, we write $(A, B)=0$ whenever $(A, B) \leq \varepsilon$ for every $\varepsilon>0$.

Definition $2 R^{2}=\{(x, y) \mid x, y \in \mathbf{R}\}$. The elements of \mathbf{R}^{2} are called points.
Definition 3 Let $(a, b),(c, d) \in \mathbf{R}^{2}$ and $\alpha \in \mathbf{R}$. Then

$$
\begin{array}{cr}
(a, b)+(c, d)=(a+c, b+d) & \text { (addition of points) } \\
(a, b)-(c, d)=(a-c, b-d) & \text { (subtraction of points) } \\
\alpha(c, d)=(\alpha c, \alpha d) & \text { (product of scalars and points) } \\
|(a, b)|=\sqrt{a^{2}+b^{2}} & \text { (magnitude of a point) }
\end{array}
$$

Definition 4 Let A and B be subsets of \mathbf{R}^{2} and suppose $\varepsilon>0$. We say that A is within ε of B if and only if there exist $n \in \mathbf{N}$ and $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset A$ so that for every point $(x, y) \in A \backslash\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ there is a point $(u, v) \in$ B (dependent upon (x, y)) so that $|(x-u, y-v)| \leq \varepsilon$. We use the notation $(A, B) \leq \varepsilon$ to denote the statement " A is within ε of B ". In addition, we write $(A, B)=0$ whenever $(A, B) \leq \varepsilon$ for every $\varepsilon>0$.

1. Suppose $A=\left\{x \left\lvert\, 0 \leq x \leq \frac{1}{2}\right.\right\}$ and $B=\left\{u \left\lvert\, u=\frac{1}{2}\right.\right.$ or $\frac{3}{4}<u \leq \frac{7}{8}$ or $\left.u=2\right\}$.
(a) Show that $(A, B) \leq \frac{1}{2}$.
(b) Is there a smallest positive number ε so that $(B, A) \leq \varepsilon$? Prove your claim.
2. Suppose $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$ and $B=\{0\}$. Show that $(A, B)=0$ and $(B, A)=0$.
3. Show that if A is a nonempty finite subset of \mathbf{R} and B is any subset of R then $(A, B)=0$
4. Give examples of subsets A and B of \mathbf{R} to show that $(A, B)=0$ does not necessarily imply $(B, A)=0$.
5. Let $A, B, C \subset \mathbf{R}$ and suppose $\varepsilon>0$ such that $(A, B) \leq \varepsilon$ and $(C, B) \leq \varepsilon$. Let $A \cup C$ denote the union of A and C, and let $A \cap C$ denote the intersection of A and C. That is

$$
A \cup C=\{x \mid x \in A \text { or } x \in C\}
$$

and

$$
A \cap C=\{x \mid x \in A \text { and } x \in C\}
$$

(a) Show $(A \cup C, B) \leq \varepsilon$.
(b) Show $(A \cap C, B) \leq \varepsilon$ provided $A \cap C$ is not the empty set.
6. Give examples of subsets A, B and C of \mathbf{R} to show that $(A, B)=0$ and $(C, B)=0$ does not necessarily imply $(A, C)=0$.
7. Give examples of subsets A, B and C of \mathbf{R} to show that $(A, B)=0$ and $(B, C)=0$ does not necessarily imply $(A, C)=0$.
8. Let \mathbf{Q} denote the set of rational numbers and \mathbf{I} denote the set of irrational numbers. It is a well know property of the real numbers that a rational number lies between any two distinct real numbers. Show that $\sqrt{2} \in \mathbf{I}$. Then use the property above to prove $(\mathbf{Q}, \mathbf{I})=0$ and $(\mathbf{I}, \mathbf{Q})=0$.
9. If $C \subset \mathbf{R}$ we define

$$
C^{2}=\left\{x^{2} \mid x \in C\right\}
$$

Show that if $A, B \subset \mathbf{R}$ and $(A, B)=0$ then $\left(A^{2}, B^{2}\right)=0$.
10. Let $A, B \subset \mathbf{R}$ and suppose $\alpha \in \mathbf{R}$. Define

$$
A+B=\{x+y \mid x \in A \text { and } y \in B\}
$$

and

$$
\alpha A=\{\alpha x \mid x \in A\}
$$

(a) Show that if A and B satisfy $(A, B)=0$ then $(\alpha A, \alpha B)=0$.
(b) Show by example that if $A, B, C, D \subset \mathbf{R}$ satisfy $(A, C)=0$ and $(B, D)=0$ then it is not necessarily the case that

$$
(A+B, C+D)=0
$$

11. Let $\theta>0$ and define

$$
A_{\theta}=\left\{\left.\left(\frac{n}{n+1} \cos (n \pi \theta), \frac{2 n}{2 n+1} \sin (n \pi \theta)\right) \right\rvert\, n \in \mathbf{N}\right\}
$$

and

$$
B=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

(Note: The argument $n \theta$ above is given in radians, not degrees!!)
(a) Show that if $\theta>0$ then $\left(A_{\theta}, B\right)=0$.
(b) Suppose $\theta>0$ is a rational number. Is there a smallest positive number ε so that $\left(B, A_{\theta}\right) \leq \varepsilon$. Prove your claim.
(c) Show that if $\theta>0$ is an irrational number then $\left(B, A_{\theta}\right)=0$.
(d) Show that if $\theta, \omega>0$ are irrational numbers then $\left(A_{\theta}, A_{\omega}\right)=0$.
12. Let $A=\left\{\left(x, x^{2}\right) \mid-4 \leq x \leq 4\right\}$ and $B=\{(x, 2 x+1) \mid-4 \leq x \leq 4\}$. Is there a smallest possible number $\varepsilon>0$ so that

$$
(A, B) \leq \varepsilon ?
$$

Prove your claim.
13. Define

$$
S=\left\{(0,0),(1,0),\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\right\}
$$

Let P and J be points in \mathbf{R}^{2}. We define

$$
A_{1}=\{P\}
$$

Then, inductively, for $n=2,3, \ldots$ define

$$
A_{n}=\left\{\left.\frac{1}{2} U+\frac{1}{2} V \right\rvert\, U \in A_{n-1} \text { and } V \in S\right\}
$$

Similarly, we define

$$
B_{1}=\{J\}
$$

Then, inductively, for $n=2,3, \ldots$ define

$$
B_{n}=\left\{\left.\frac{1}{2} U+\frac{1}{2} V \right\rvert\, U \in B_{n-1} \text { and } V \in S\right\}
$$

Let $A=A_{1} \cup A_{2} \cup A_{3} \cup \cdots$ and $B=B_{1} \cup B_{2} \cup B_{3} \cup \cdots$. Show that $(A, B)=0$. Notes: $\frac{1}{2} U+\frac{1}{2} V$ is the midpoint of the line segment joining U and V. The choice $P=(0,0)$ leads to the set A shown in Figure 1.
14. Define $R_{1}=(0,0), R_{2}=(1,0)$ and $R_{3}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. For each $n \in \mathbf{N}$ let a_{n} be chosen from the set $\{1,2,3\}$, and form the number a given by the decimal expansion

$$
a=0 . a_{1} a_{2} a_{3} a_{4} \cdots
$$

Now create a set A as follows. Let P_{0} be a point in \mathbf{R}^{2}. Set

$$
P_{1}=\frac{1}{2} P_{0}+\frac{1}{2} R_{a_{1}}
$$

and inductively, for $n=2,3,4, \ldots$ define

$$
P_{n}=\frac{1}{2} P_{n-1}+\frac{1}{2} R_{a_{n}}
$$

Then set $A=\left\{P_{0}, P_{1}, P_{2}, P_{3} \ldots\right\}$.
(a) Show that if a is a rational number then there exist a finite number of points $Q_{1}, Q_{2}, \ldots, Q_{m}$ in \mathbf{R}^{2} so that

$$
\left(A,\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}\right)=0
$$

(b) Is the converse of the statement above true?
(c) Let B be a set constructed in the manner described in problem 13. Is it possible for the values a_{n} to be chosen in such a way that $(A, B)=$ 0 ?

