Localizations of Abelian Groups

Let $\mathfrak C$ be any category, A,B,C objects in $\mathfrak C$ and $\alpha:A\to B$ a morphism. The object C is called perpendicular to α , and we write $\alpha\perp C$, if for each morphism $\varphi:A\to C$ there is a unique $\psi:B\to C$ such that $\varphi=\psi\circ\alpha$. Now α is called a localization of A, if it happens that $\alpha\perp B$.

Under mild conditions on \mathfrak{C} , any localization α gives rise to a reflective subcategory $\alpha^{\perp} = \{C \in \mathfrak{C} : \alpha \perp C\}$ and an idempotent functor $\mathcal{L}_{\alpha} : \mathfrak{C} \to \alpha^{\perp}$ such that $\mathcal{L}_{\alpha}(A) = B$.

One of the best understood categories is the category \mathfrak{Ab} of all abelian groups and we investigate localizations in that category. For example, it has been known for a long time that if $\eta: \mathbb{Z} \to H$ is a localization in \mathfrak{Ab} , then H is a commutative ring with identity such that all endomorphisms of the additive group of H are multiplications by elements of H. Such rings are known as Erings and the functor \mathcal{L}_{η} can be described. On the other hand, it turns out that for many subgroups L of \mathbb{Q} , the additive group of all rational numbers, there are localizations $\gamma: L \to M$, where not much is known about the functor \mathcal{L}_{γ} . Moreover, we show that localizations in \mathfrak{Ab} exist in abundance.