Cracking the “Crack Problem” via meromorphic approximation

Abstract

We discuss some new links between approximation theory in the complex domain and a family of inverse problems for the 2D Laplacian related to nondestructive testing. More precisely, let D be a bounded, simply connected domain with smooth boundary Γ and suppose that D contains an unknown one-dimensional crack γ (a smooth Jordan arc with distinct endpoints γ_0, γ_1). We consider the Neumann boundary value problem:

$$
\Delta u = 0 \quad \text{in} \quad D \setminus \gamma,
\frac{\partial u}{\partial n_\Gamma} = \Phi \quad \text{on} \quad \Gamma,
\frac{\partial u}{\partial n_\gamma}^\pm = 0 \quad \text{on} \quad \gamma \setminus \{\gamma_0, \gamma_1\},
$$

where n_Γ denotes the outer unit normal vector to γ, n_γ one of the two unit normal vectors to γ, and $\Phi \in L^2(\Gamma)$ is, in the thermal framework, a prescribed heat flux along Γ. The inverse problem then consists of determining the existence and location of γ from knowledge of the function Φ on Γ. In the special case when D is the unit disk and the crack is a hyperbolic line segment, e.g. $[a, b] \subset (-1, 1)$, the method we describe concerns the asymptotic behavior of the poles of best meromorphic approximants on Γ to a Markov function

$$
f(z) = \frac{1}{2\pi i} \int_a^b \frac{d\mu(t)}{t - z}.
$$

Connections with Hankel operators and the asymptotic behavior of singular numbers for these operators will also be discussed.

References
