Cracking the "Crack Problem" via meromorphic approximation

Abstract

We discuss some new links between approximation theory in the complex domain and a family of inverse problems for the 2D Laplacian related to nondestructive testing. More precisely, let D be a bounded, simply connected domain with smooth boundary Γ and suppose that D contains an unknown one-dimensional crack γ (a smooth Jordan arc with distinct endpoints γ_0, γ_1). We consider the Neumann boundary value problem:

$$\Delta u = 0 \quad \text{in} \quad D \setminus \gamma,$$

$$\frac{\partial u}{\partial n_{\Gamma}} = \Phi \quad \text{on} \quad \Gamma,$$

$$\frac{\partial u^{\pm}}{\partial n_{\gamma}} = 0 \quad \text{on} \quad \gamma \setminus \{\gamma_0, \gamma_1\},$$

$$(*)$$

where n_{Γ} denotes the outer unit normal vector to γ , n_{γ} one of the two unit normal vectors to γ , and $\Phi \in L^2(\Gamma)$ is, in the thermal framework, a prescribed heat flux along Γ . The inverse problem then consists of determining the existence and location of γ from knowledge of the function Φ on Γ . In the special case when D is the unit disk and the crack is a hyperbolic line segment, e.g. $[a,b] \subset (-1,1)$, the method we describe concerns the asymptotic behavior of the poles of best meromorphic approximants on Γ to a Markov function

$$f(z) = \frac{1}{2\pi i} \int_{a}^{b} \frac{d\mu(t)}{t-z}$$

Connections with Hankel operators and the asymptotic behavior of singular numbers for these operators will also be discussed.

References

- L. Baratchart, V. Prokhorov and E.B. Saff, "On Meromorphic Approximation of Markov Functions", manuscript.
- L. Baratchart, J. Leblond, F. Mandrea and E.B. Saff, "How can meromorphic approximation help to solve some 2D inverse problems for the Laplacian?" Inverse Problems Journal, vol. 15 (1999), 79-90.