An extremal problem for central sections of a polydisc in n-dimensional complex vector space and a new inequality for Bessel functions

K. Ball (1986) found sharp bounds for the n - 1-dimensional volume of a central section of the cube $[-1 / 2,1 / 2]^{n}$ in \mathbb{R}^{n} by a hyperplane of codimension 1 . The complex counterpart of the problem reduces to a new (at least for us) inequality involving the Bessel function of order 1.
The proof uses techniques from probability, harmonic analysis, and hard analysis.
The recent results are taken from: K. Oleszkiewicz and A. Pełczyński, Polydisc slicing in \mathbb{C}^{n}, Studia Math. 142 (2000), 281-294.

