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Introduction

These notes will consider the quotient rings

A = F [x1; : : : ; xn]=hf1; : : : ; fsi

where F is a �eld and f1; : : : ; fs are polynomials with coeÆcients in F in the variables x1; : : : ; xn.
Of course, besides being a ring, A is also a vector space over F in a compatible way. We express
this by saying that A is an algebra over F .

We will be most interested in the case when A has �nite-dimension as a vector space over F .
This is what we mean by the word \algebras" in the title \Solving Equations via Algebras" of
these notes.

What's Covered. Our basic claim is that some wonderful mathematics applies to this situa-
tion, including the following:

� Solving equations.

� Resultants.

� Factoring over number �elds and �nite �elds.

� Primary decomposition.

� Galois theory.

The main reason for this richness is that an element a of a �nite commutative algebra A gives a
multiplication map

ma : A �! A

de�ned by ma(b) = ab for b 2 A. This is a linear map from a �nite-dimensional vector space
to itself, which means that many tools of linear algebra can be brought to bear to study ma.
Furthermore, since A is commutative, the linear maps ma all commute as we vary a 2 A.

What's Omitted. These notes do not discuss everything of interest connected with �nite
commutative algebras. The two main topics not covered are:

� Gorenstein duality.

� Real solutions.

A careful treatment of duality can be found in [EM1] and [EM2], and a discussion of real solutions
of polynomial equations appears in [CLO2].

Some Notation. Let A be a �nite commutative algebra as above. If f 2 F [x1; : : : ; xn], then
we will use the following notation:

� [f ] 2 A is the coset of f in the quotient ring A shown above.

� mf is the multiplication map m[f ]. Thus mf ([g]) = [fg] for all [g] 2 A.

� Mf is the matrix of mf relative to a chosen basis of A over F .

Other notation will be introduced as needed.
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1 Solving Equations

1.1 Finite-Dimensional Algebras and Gr�obner Bases

Consider a system of polynomial equations

f1(x1; : : : ; xn) = 0

f2(x1; : : : ; xn) = 0

...

fs(x1; : : : ; xn) = 0

(1.1.1)

in n variables x1; : : : ; xn with coeÆcients in a �eld F . In this section, we will address the following
questions:

� When does (1.1.1) have only �nitely many solutions over the algebraic closure F of F ?

� When (1.1.1) has only �nitely many solutions over F , how do we �nd them?

As we will see, the algebra
A = F [x1; : : : ; xn]=hf1; : : : ; fsi (1.1.2)

has a crucial role to play in both of these questions.
Before going any further, let's give an example taken from [MS] which we will use throughout

this section and the next.

Example 1.1.1 Consider the equations

f1 = x2 + 2y2 � 2y = 0

f2 = xy2 � xy = 0

f3 = y3 � 2y2 + y = 0

(1.1.3)

over the complex numbers C . If we write the the third equation as

f3 = y(y � 1)2 = 0

and the �rst equation as
f1 = x2 + 2y(y � 1) = 0;

then it follows easily that the only solutions are the points

(0; 0) and (0; 1):

However, this ignores multiplicities, which as we will see are perfectly captured by the algebra
A = C [x; y]=hf1 ; f2; f3i. 2

Our �rst major result is a necessary and suÆcient condition for the algebra A corresponding
to the equations (1.1.1) to be �nite-dimensional over F .

Theorem 1.1.2 The algebra A de�ned in (1.1.2) is �nite-dimensional over F if and only if the

equations (1.1.1) have only �nitely many solutions over the algebraic closure F .
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Proof. We will sketch the main ideas since this result is so important. A complete proof can be
found in Chapter 5, x3 of [CLO1].

First suppose that A is �nite-dimensional over F . Then, for each i, the set f[1]; [xi]; [x2i ]; : : : g �
A must be linearly dependent, so that there is a nonzero polynomial pi(xi) such that [pi(xi)] = [0]
in A. This means that

pi(xi) 2 hf1; : : : ; fsi;
which easily implies that pi vanishes at all common solutions of (1.1.1). It follows that for each
i, the solutions have only �nitely many distinct ith coordinates. Hence the number of solutions is
�nite.

Going the other way, suppose that there are only �nitely many solutions over F . Then in
particular there are only �nitely many ith coordinates, so that we can �nd a nonzero polynomial
qi(xi) which vanishes on all solutions of (1.1.1) over F . In this situation, Hilbert's Nullstellensatz
(see Chapter 4, x1 of [CLO1] for a proof) asserts that

pi(xi) = qNi (xi) 2 hf1; : : : ; fsi

for some suÆciently large integer N .
Now consider the lexicographic order >lex on monomials x

� = xa11 � � �xann . Recall that x� > x�

if a1 > b1, or a1 = b1 and a2 > b2, or . . . (in other words, the left-most nonzero entry of ��� 2 Zn

is positive). This allows us to de�ne the leading term of any nonzero polynomial in F [x1; : : : ; xn].
The theory of Gr�obner bases (explained in Chapters 2 and 5 of [CLO1]) implies that hf1; : : : ; fsi

has a Gr�obner basis g1; : : : ; gt with the following properties:

� g1; : : : ; gt are a basis of hf1; : : : ; fsi.
� The leading term of every nonzero element of hf1; : : : ; fsi is divisible by the leading term of
one of the gj .

� The set of remainder monomials

B = fx� j x� is not divisible by the leading term of any gjg

gives the cosets [x�], x� 2 B, which form a basis of the quotient algebra A over F .

Since the leading term of pi(xi) is a power of xi, the second bullet implies that the leading term
of some gj is a power of xi. It follows that in any x� 2 B, xi must appear to strictly less than this
power. Since this is true for all i, it follows that B is �nite, so that A is �nite-dimensional by the
third bullet. 2

Let's apply this to our example.

Example 1.1.3 For the equations f1 = f2 = f3 = 0 of Example 1.1.1, one can show that f1; f2; f3
form a Gr�obner basis for lexicographic order with x > y. Thus the leading terms of the polynomials
in the Gr�obner basis are

x2; xy2; y3;

so that the remainder monomials (= monomials not divisible by any of these leading terms) are

B = f1; y; y2; x; xyg:

Hence A has dimension 5 over C in this case. 2
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1.2 Eigenvalues of Multiplication Maps

For the remainder of this section, we will assume that

A = F [x1; : : : ; xn]=hf1; : : : ; fsi

is �nite-dimensional over F . For simplicity of exposition, we will also assume that

F = F:

Thus F will always be algebraically closed.
As in the introduction, a polynomial f 2 F [x1; : : : ; xn] gives a multiplication map

mf : A �! A:

Our main result is the following observation �rst noticed by Lazard in 1981 (see [Lazard]).

Theorem 1.2.1 Assume that (1.1.1) has a �nite positive number of solutions. The eigenvalues of

mf are the values of f at the solutions of (1.1.1) over F .

Proof. We will sketch the proof and refer to Theorem 4.5 of Chapter 2 of [CLO2] for the details.
First suppose � 2 F is not a value of f at a solution of (1.1.1). Then the equations

f � � = f1 = � � � = fs = 0

have no solutions over F = F , so that by the Nullstellensatz, we can write

1 = h � (f � �) +

sX
i=1

hifi

for some polynomials h; h1; : : : ; hs 2 F [x1; : : : ; xn]. Since the multiplication map m1 is the identity
1A and each mfi is the zero map, it follows that

mf � �1A = mf�� : A �! A

is an isomorphism with inverse given by mh. Thus � is not an eigenvalue of mf .
Going the other way, let p 2 Fn be a solution of (1.1.1). As in the proof of Theorem 1.1.2, the

remainder monomials B = fx�(1); : : : ; x�(m)g give the basis [x�(1)]; : : : ; [x�(m)] of A. The matrix
of mf relative to this basis is denoted Mf . For j = 1; : : : ;m, let p�(j) be the element of F obtained
by evaluating x�(j) at p. Then we claim that

MT
f (p

�(1); : : : ; p�(m))T = f(p)(p�(1); : : : ; p�(m))T ; (1.2.1)

where T denotes transpose. Since 1 is an element of B, the vector (p�(1); : : : ; p�(m))T is nonzero.
Thus (1.2.1) implies that f(p) is an eigenvalue of MT

f and hence also of Mf and mf .
To prove (1.2.1), suppose that Mf = (mij). This means that

[x�(j)f ] =

mX
i=1

mij [x
�(i)]
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for j = 1; : : : ;m. Then x�(j)f �Pm

i=1mijx
�(i) mod hf1; : : : ; fsi. Since f1; : : : ; fs all vanish at p,

evaluating this congruence at p implies that

p�(j)f(p) =

mX
i=1

mijp
�(i)

for j = 1; : : : ;m. This easily implies (1.2.1). 2

Example 1.2.2 For the polynomials of Examples 1.1.1 and 1.1.3, the set B = f1; y; y2; x; xyg
gives a basis of A. Then one easily sees that the matrix of mx is

Mx =

0
BBBB@
0 0 0 0 0
0 0 0 2 2
0 0 0 �2 �2
1 0 0 0 0
0 1 1 0 0

1
CCCCA :

The �rst and second columns are especially easy to see since here mx maps basis elements to basis
elements. For the third column, one uses f2 = xy2 � xy to show that

mx([y
2]) = [xy2] = [xy]:

The fourth and �fth columns are obtained similarly. Using Maple or Mathematica, one �nds that
the characteristic polynomial of Mx is CharPolyMx

(u) = u5. By Theorem 1.2.1, it follows that all
solutions of the equations (1.1.3) have x-coordinate equal to 0.

In a simlar way, one �nds that my has matrix

My =

0
BBBB@
0 0 0 0 0
1 0 �1 0 0
0 1 2 0 0
0 0 0 0 0
0 0 0 1 1

1
CCCCA :

with characteristic polynomial CharPolyMy
(u) = u2(u � 1)3. Thus the y-coordinate of a solution

of (1.1.3) is 0 or 1. For later purposes we also note that

Mx has minimal polynomial u3

My has minimal polynomial u(u� 1)2:

We will see that later that since y takes distinct values 0 and 1 at the solution, the characteristic
polynomial u2(u� 1)3 of My tells us the multiplicities of the solutions of (1.1.3). 2

In general, the matrix of mf : A ! A is easy to compute once we have a Gr�obner basis G of
hf1; : : : ; fsi. This is true because of the following:
� As we saw in the proof of Theorems 1.1.2 and 1.2.1, G determines the remainder monomials
B which give a basis of A.

� Given g 2 F [x1; : : : ; xn], the division algorithm from Chapter 2, x3 of [CLO1] constructs a
normal form

NF(g) 2 Span(B)
with the property that g � NF(g) mod hf1; : : : ; fsi.
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This gives an easy algorithm for computing Mf with respect to the basis of A given by B: For
each x� 2 B, simply compute NF(x�f) using the division algorithm. This is what we did in
Example 1.2.2.

In particular, we can compute the matrix Mxi for each i, and then Theorem 1.2.1 implies that
the xi-coordinates of the solutions are given by the eigenvalues of Mxi . But how do we put these
coordinates together to �gure out the actual solutions? This was trivial to do in Example 1.2.2.
In the general case, one could simply try all possible combinations of the coordinates to �nd the
solutions. But this is very ineÆcient.

1.3 Eigenvectors of Multiplication Maps

A better method for solving equations, �rst described in [AS], is to use the eigenvectors of MT
f

given by (1.2.1), namely

MT
f (p

�(1); : : : ; p�(m))T = f(p)(p�(1); : : : ; p�(m))T :

In this equation, p is a solution of (1.1.1), B = fx�(1); : : : ; x�(m)g, and p�(j) is the element of F
obtained by evaluating x�(j) at p. As we noted in the proof of Theorem 2.1, (1.2.1) implies that
(p�(1); : : : ; p�(m))T is an eigenvalue of MT

f for the eigenvalue f(p).
This allows us to use eigenvalues to �nd solutions as follows. Suppose that all eigenspaces of

MT
f have dimension 1 (we say that MT

f is non-derogatory in this case). Then suppose that � is an

eigenvalue of MT
f with eigenvector

~v = (u1; : : : ; um)
T :

By assumption, we know that ~v is unique up to a scalar. At this point, we know that � = f(p) for
some solution p, but we don't know what p is.

To determine p, observe that (p�(1); : : : ; p�(m))T is also an eigenvalue of MT
f for �. Since we

may assume that x�(1) = 1, the �rst coordinate of this eigenvector is 1. Since � has a 1-dimensional
eigenspace, our computed eigenvector ~v is a scalar multiple of (p�(1); : : : ; p�(m))T . Hence, if we
rescale ~v so that its �rst coordinate is 1, then

~v = (1; u2; : : : ; um)
T = (1; p�(2); : : : ; p�(m))T : (1.3.1)

The key point is that the monomials x�(j) 2 B include some (and often all) of the variables
x1; : : : ; xn. This means that we can read o� the corresponding coordinates of p from ~v. Here is an
example of how this works.

Example 1.3.1 Consider the matrices MT
x and MT

y from Example 1.2.2. Neither is non-
derogatory since their eigenspaces all have dimension 2. However, if we set f = 2x+ 3y, then

MT
f = 2MT

x + 3MT
y

is non-derogatory such that

the eigenvalue 0 has eigenbasis ~v = (1; 0; 0; 0; 0)T

the eigenvalue 3 has eigenbasis ~v = (1; 1; 1; 0; 0)T :

Since B = f1; y; y2; x; xyg has the variables x and y in the fourth and second positions respectively,
it follows from (1.3.1) that the x- and y-coordinates of the solutions are the fourth and second
entries of the eigenvectors. This gives the solutions

(0; 0) and (0; 1)
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found in Example 1.1.1. 2

We should also mention that being non-derogatory is equivalent to saying that the minimal
polynomial equals the characteristic polynomial. This will have a nice consequence in Section 1.4
below.

In order for this method to work in general, we need to answer the following questions:

� What happens when some variables are missing from B?
� Can we �nd f 2 F [x1; : : : ; xn] such that MT

f is non-derogatory? What happens if we can't?

The remainder of Section 1.3 will be devoted to answering these questions.

Missing Variables. Once we �x a monomial ordering, the ideal hf1; : : : ; fsi has a Gr�obner
basis G. We assume that G is reduced, which means the following:

� The leading coeÆcient of every g 2 G is 1.

� For any g 2 G, its non-leading terms are not divisible by the leading terms of the remaining
polynomials in G.

As we've already explained, G then determines the remainder monomials

B = fx� j x� is not divisible by the leading term of any g 2 Gg:
We will assume that G 6= f1g, which implies that 1 2 B and that (1.1.1) has solutions in F (the
latter is true by the Consistency Algorithm described in Chapter 4, x1 of [CLO1] since F = F ).

We need to understand which variables lie in B. We say that xi is known if xi 2 B and missing

otherwise (this is not standard terminology). As explained above, if MT
f is non-derogatory, then

the eigenvectors determine the known coordinates of all solutions. It remains to �nd the missing
coordinates. We will analyze this using the arguments of [MS].

A variable xi is missing if it is divisible by the leading term of some element of G. Since G 6= f1g
and is reduced, it follows that there is some gi 2 G such that

gi = xi + terms strictly smaller according to the term order:

Furthermore, since this is true for every missing variable and G is reduced, it follows that other
terms in the above formula for gi involve only known variables (if a missing variable appeared in
some term, it would be a missing variable xj 6= xi, so that the term would be divisible by the
leading term of gj = xj + � � � 2 G). Thus

gi = xi + terms involving only known variables:

Now let p be a solution of (1.1.1). Then gi(p) = 0, so that the above analysis implies that

0 = pi + terms involving only known coordinates:

Hence the gi 2 G tell us how to �nd the missing coordinates in terms of the known ones.

Derogatory Polynomials. Our �rst observation is that there are systems of equations such
that MT

f is derogatory for all polynomials f 2 F [x1; : : : ; xn]. Here is a simple example.

Example 1.3.2 Consider the equations

x2 = y2 = 0:
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The only solution is p = (0; 0) and B = f1; x; y; xyg. Given f = a+ bx + cy + dx2 + exy + � � � in
F [x; y], we have f(p) = a and

MT
f =

0
BB@
a b c e

0 a 0 c

0 0 a b

0 0 0 a

1
CCA :

Since MT
f �aI4 has rank � 2, it follows that the eigenspace of MT

f for the eigenvalue f(p) = a has

dimension at least 2. Thus MT
f is always derogatory. 2

To describe what happens in general, we need to discuss the local structure of solutions. A basic
result from commutative algebra states that the ideal hf1; : : : ; fsi has a primary decomposition.
Since we are over algebraically closed �eld and the equations (1.1.1) have only �nitely many
solutions, the primary decomposition can be written

hf1; : : : ; fsi =
\
p

Ip (1.3.2)

where the intersection is over all solutions p of (1.1.1) and each Ip is de�ned by

Ip = ff 2 F [x1; : : : ; xn] j gf 2 hf1; : : : ; fsi for some g 2 F [x1; : : : ; xn] with g(p) 6= 0g: (1.3.3)

One can show that Ip is a primary ideal, which in this case means that
p
Ip is the maximal ideal

hx1 � p1; : : : ; xn � pni, p = (p1; : : : ; pn). We will explain how to compute primary decompositions
in Section 4.

Given the above primary decomposition of hf1; : : : ; fsi, we set
Ap = F [x1; : : : ; xn]=Ip:

Then (1.3.2) and the Chinese Remainder Theorem give an algebra isomorphism

A = F [x1; : : : ; xn]=hf1; : : : ; fsi '
Y
p

F [x1; : : : ; xn]=Ip =
Y
p

Ap: (1.3.4)

We call Ap the local ring of the solution p. The idea is that Ap reects the local structure of the
solutions. For example, the multiplicity of p as a solution of (1.1.1) is de�ned to be

mult(p) = dimF Ap:

We now de�ne a special kind of solution.

De�nition 1.3.3 A solution p of (1.1.1) is curvilinear if Ap ' F [x]=hxki for some integer k � 1.

Over the complex numbers, p is curvilinear if and only if we can �nd local analytic coordinates
u1; : : : ; un at p and an integer k � 1 such that the equations are equivalent to

u1 = u2 = � � � = un�1 = ukn = 0:

Alternatively, let mp be the maximal ideal of Ap. The integer

ep = dimF mp=m
2
p = #minimal generators of mp (1.3.5)

is called the embedding dimension of Ap. Then p is curvilinear if and only if Ap has embedding
dimension ep � 1.

Here is the characterization of those systems of equations for which MT
f is non-derogatory for

some f 2 F [x1; : : : ; xn].
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Theorem 1.3.4 There exists f 2 F [x1; : : : ; xn] such that MT
f (or Mf) is non-derogatory if and

only if every solution of (1.1.1) is curvilinear. Furthermore, if this happens, then MT
f and Mf are

non-derogatory when f is a generic linear combination of x1; : : : ; xn.

Proof. First observe that since there are only �nitely many solutions and F is in�nite (being
algebraically closed), a generic choice of a1; : : : ; an guarantees that f = a1x1 + � � � + anxn takes
distinct values at the solutions p.

Next observe that mf is compatible with the algebra isomorphism (1.3.4). If we also assume
that f takes distinct values at the solutions, then it follows that Mf is non-derogatory if and only
if

mf : Ap ! Ap

is non-derogatory for every p.
To prove the theorem, �rst suppose that mf : Ap ! Ap is non-derogatory and let

u = [f � f(p)] 2 Ap

be the element of Ap determined by f � f(p). Then the kernel of mf�f(p) has dimension 1, which
implies the following:

� u lies in the maximal ideal mp since elements in Ap nmp are invertible.
� The image of mf�f(p) has codimension 1.

Since the image is hui � mp and mp also has codimension 1 in Ap, it follows that

hui = mp
This proves that p is curvilinear.

Conversely, if every p is curvilinear, then it is easy to see that mf is non-derogatory when f is
a generic linear combinations of the variables. We leave the details as an exercise to the reader. 2

Since not all systems of equations have curvilinear solutions, it follows that the above method
for �nding solutions needs to be modi�ed. There are two ways to proceed:

� First, one can compute the radicalp
hf1; : : : ; fsi = ff 2 F [x1; : : : ; xn] j fk 2 hf1; : : : ; fsi for some k � 1g:

The radical gives a system of equations with the same solutions as (1.1.1), except that all
solutions how have multiplicity 1 and hence are curvilinear. Thus Theorem 1.3.4 applies to
the radical system. Furthermore, Proposition 2.7 of Chapter 2 of [CLO2] states thatp

hf1; : : : ; fsi = hf1; : : : ; fs; (p1(x1))red; : : : ; (pn(xn))redi;
where pi(xi) is the minimal polynomial of Mxi written as a polynomial in xi and (pi(xi))red is
the squarefree polynomial with the same roots as pi(xi).

� Second, one can intersect eigenspaces of the MT
xi
. Let p1 be an eigenvalue of M

T
x1
, so that p1 is

the �rst coordinate of a solution of (1.1.1). Then, since MT
x1

and MT
x2

commute, MT
x2

induces
a linear map

MT
x2

: EA(p1;M
T
x1
)! EA(p1;M

T
x1
):

where EA(p1;M
T
x1
) is the eigenspace of MT

x1
for the eigenvalue p1. The eigenvalues of this map

give the second coordinates of all solutions which have p1 as their �rst coordinate. Continuing
in this way, one gets all solutions. This method is analyzed carefully in [MT].
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1.4 Single-Variable Representation

One nice property of the non-derogatory case is that when mf is non-derogatory, we can represent
the algebra A using one variable. Here is the precise result.

Proposition 1.4.1 Assume that f 2 F [x1; : : : ; xn] and that mf is non-derogatory. Then there is

an algebra isomorphism

F [u]=hCharPolymf
(u)i ' A:

Proof. Consider the map F [u] ! A de�ned by P (u) 7! [P (f)]. Then P (u) is in the kernel if and
only if [P (f)] = [0], which implies that for any g 2 F [x1; : : : ; xn], we have

P (mf )([g]) = mP (f)([g]) = [P (f) � g] = [P (f)][g] = [0]:

It follows that P (u) must be divisible by the minimal polynomial of mf . Furthermore, applying
the above equation with g = 1 shows that the minimal polynomial is in the kernel. Thus we get
an injective algebra homomorphism

F [u]=hMinPolymf
(u)i �! A:

But MinPolymf
(u) = CharPolymf

(u) since mf is non-derogatory, and we also know that

dimF F [u]=hCharPolymf
(u)i = degCharPolymf

(u) = dimF A:

It follows that the above injection is the desired isomorphism. 2

Notice that this proof applies over any �eld F . Thus, when F is in�nite and all of the solutions
are curvilinear (e.g., all have multiplicity 1), then Proposition 1.4.1 applies when f is a generic
linear combination of the variables.

We can use the single variable representation to give an alternate method for �nding solutions.
The idea is that the isomorphism

F [u]=hCharPolymf
(u)i ' A

enables us to express the coset [xi] 2 A as a polynomial in [f ], say

[xi] = Pi([f ]): (1.4.1)

Furthermore, it is an easy exercise to show that Pi can be explicitly computed using a Gr�obner
basis for hf1; : : : ; fsi. Now we get all solutions as follows.

Proposition 1.4.2 Assume that mf be non-derogatory and let P1; : : : ; Pn be constructed as above.

Then for any root � of CharPolymf
(u), the n-tuple

(P1(�); : : : ; P1(�))

is a solution of (1.1.1), and all solutions of (1.1.1) arise this way.

Proof. A solution p = (p1; : : : ; pn) of (1.1.1) corresponds to an algebra homomorphism A ! F

which takes [xi] to pi. Similarly, algebra homomorphisms F [u]=hCharPolymf
(u)i ! F are given

by evaluation at roots of CharPolymf
(u). Thus we are done by Proposition 1.4.1 and (1.4.1). 2

The single-variable representation will have some unexpected consequences in later sections.
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1.5 Generalized Eigenspaces and Multiplicities

The �nal observation of Section 1 relates multiplicities and generalized eigenspaces. Given an
eigenvalue � of a linear map T : V ! V , recall that its generalized eigenspace is

GV (�; T ) = fv 2 V j (T � �I)N (v) = 0 for some N � 1g:
It is well-known that the dimension of G(�; T ) is the multiplicity of � as a root of the characteristic
polynomial of T .

Proposition 1.5.1 Let f 2 F [x1; : : : ; xn] take distinct values at the solutions of (1.1.1). Then, if
p is one of the solutions, then the generalized eigenspace GA(f(p);mf ) is naturally isomorphic to

the local ring Ap. Furthermore, the characteristic polynomial of mf : A! A is

CharPolymf
(u) =

Y
p

(u� f(p))mult(p):

Proof. First observe that mf is compatible with the isomorphism

A '
Y
p

Ap =
Y
p

F [x1; : : : ; xn]=Ip

where hf1; : : : ; fsi =
T
p Ip is the primary decomposition and the product and intersection are over

all solutions of (1.1.1).
Now �x one solution p and consider the behavior of mf�f(p). This is invertible on Aq for q 6= p

since f(q) 6= f(p) and nilpotent on Ap since f(p) is the only eigenvalue of mf on Ap. It follows
immediately that we can identify Ap with the generalized eigenspace GA(f(p);mf ).

The second assertion of the proposition follows from mult(p) = dimF Ap = dimF GA(f(p);mf )
and, as already observed, the latter is the multiplicity of f(p) as a root of the characteristic
polynomial of mf . 2

Since F is in�nite, it follows that if f = a1x1+ � � �+ anxn for randomly chosen a1; : : : ; an 2 F ,
then f will take distinct values at the solutions of (1.1.1) with a very high probablility. In this
situation, the factorization of the minimal polynomial of mf gives the number of solutions and
their multiplicities. Thus, given a system of equations (1.1.1), we have a probabilisitc algorithm
for �nding both the number of solutions and their respective multiplicities.

Numerical Issues. A serious numerical issue is that it is sometimes hard to distinguish
between a single solution of multiplicity k > 1 and a cluster of k very close solutions of multiplicity
1. Several people, including Hans Stetter, are trying to come up with numerically stable methods
for understanding such clusters. For example:

� While the individual points in a cluster are not stable, their center of gravity is.

� When the cluster consists of two points, the slope of the line connecting them is numerically
stable.

More details can be found in [HS]. We should also note that from a sophisticated point of view,
this can be considered as studying the numerical stability points in the punctal Hilbert scheme of
�xed �nite length.

Other Notions of Multiplicity. The multiplicity mult(p) de�ned in this section is sometimes
called the geometric multiplicity. There is also a more subtle version of multiplicity called the
algebraic multiplicity e(p). A discussion of this notion of multiplicity can be found in [Cox].
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2 Ideals De�ned By Linear Conditions

2.1 Duals and Dualizing Modules

As in the previous section, we will assume that

A = F [x1; : : : ; xn]=hf1; : : : ; fsi

is a �nite dimensional algebra over an algebraically closed �eld F . The dual space

A� = HomF (A;F );

becomes an A module via
(a`)(b) = `(ab)

for a; b 2 A and ` 2 A�.
If f`1; : : : ; `mg is a basis of A�, then composing with the quotient map F [x1; : : : ; xn]! A gives

linear maps
L1; : : : ; Lm : F [x1; : : : ; xn] �! F

with the property that

hf1; : : : ; fsi = ff 2 F [x1; : : : ; xn] j Li(f) = 0; i = 1; : : : ;mg

Thus the ideal hf1; : : : ; fsi is de�ned by the linear conditions given by the Li. In this section, we
will explore some interesting ways in which this can be done.

But �rst, we need to explain how A� relates to commutative algebra. Recall from Section 1
that we have the product decomposition

A '
Y
p

Ap

induced by the primary decomposition hf1; : : : ; fsi =
T
p Ip, where the product and intersection

are over all solutions in Fn of the equations

f1 = f2 = � � � = fs = 0:

The product induces a natural isomorphism

A� '
Y
p

A�
p: (2.1.1)

Since Ap is a 0-dimensional local ring, the dual space A
�
p is the dualizing module of Ap. The theory

of dualizing modules is explained in Chapter 21 of [Eisenbud].

One feature of (2.1.1) is the following. For each solution p, let f`p;igmult(p)
i=1 be a basis of A�

p.
As usual, every `p;i gives a linear map

Lp;i : F [x1; : : : ; xn] �! F:

Then:

13



� If we �x p, then

Ip = ff 2 F [x1; : : : ; xn] j Lp;i(f) = 0 for i = 1; : : : ;mult(p)g

is the primary ideal such that Ap = F [x1; : : : ; xn]=Ip.

� If we vary over all p and i, then the Lp;i de�ne the ideal

hf1; : : : ; fsi =
\
p

Ip:

Thus this way of thinking of the linear conditions gives not only the ideal but also its primary
decomposition.

Finally, we say that the local ring Ap is Gorenstein if there is an Ap-module isomorphism

A�
p ' Ap

This is equivalent to the existence of a nondegenerate bilinear form

h�; �i : Ap �Ap ! F

with the property that
hab; ci = ha; bci

for a; b; c 2 Ap. See Chapter 21 of [Eisenbud] for more on duality in this situation.

2.2 Di�erential Conditions De�ning Ideals

So far, we've seen that each primary ideal Ip can be described using mult(p) linear conditions.
We will now explain how to represent these linear conditions using constant coeÆcient di�erential
operators evaluated at p. We will assume that F has characteristic 0.

Let's begin with some examples.

Example 2.2.1 The equation
x2(x� 1)3 = 0

has the solutions 0 of multiplicity 2 and 1 of multiplicity 3. In terms of derivatives, we have

hx2(x� 1)3i = ff 2 F [x] j f(0) = f 0(0) = 0; f(1) = f 0(1) = f 00(1) = 0g:

Notice that the multiplicities correspond to the number of conditions de�ning the ideal at 0 and 1
respectively. 2

Example 2.2.2 Consider the three sets of equations

(a) : x2 = xy = y2 = 0

(b) : x2 = y2 = 0

(c) : x = y3 = 0:

14



One easily sees that (0; 0) is the only solution with multiplicity 3 in case (a), 4 in case (b), and 3
in case (c). In terms of partial derivatives, the corresponding ideals are given by

(a) : hx2; xy; y2i = ff 2 F [x; y] j f(0; 0) = fx(0; 0) = fy(0; 0) = 0g
(b) : hx2; y2i = ff 2 F [x; y] j f(0; 0) = fx(0; 0) = fy(0; 0) = fxy(0; 0) = 0g
(c) : hx; y3i = ff 2 F [x; y] j f(0; 0) = fy(0; 0) = fyy(0; 0) = 0g:

In each case, the multiplicity is the number of conditions de�ning the ideal. 2

We will now generalize this description and use it to obtain interesting information about the
local rings. For instance, in the above example, we will see that the descriptions of the ideals in
terms of partial derivatives imply the following:

� In cases (b) and (c), the ring is Gorenstein but not in case (a).

� In case (c) the ring is curvilinear but not in cases (a) and (b).

We begin by setting up some notation. Consider the polynomial ring F [@1; : : : ; @n]. Then an
exponent vector � = (a1; : : : ; an) gives the monomial @

�, which we regard as the partial derivative

@� =
@a1+���+an

@xa11 � � � @xann :

Thus elements of F [@1; : : : ; @n] become constant coeÆcient di�erential operators on F [x1; : : : ; xn].
In examples, we sometimes write @� as @x� . Thus

@xy2 = @(1;2) =
@3

@x@y2

when operating on F [x; y]. Also note that Example 2.2.2 involves the operators

(a) : 1; @x; @y

(b) : 1; @x; @y; @xy

(c) : 1; @y; @y2 :

(2.2.1)

applied to polynomials in F [x; y] and evaluated at (0; 0). Here, 1 is the identity operator on F [x; y].
We next de�ne the deation or shift of D =

P
� c�@

� 2 F [@1; : : : ; @n] by an exponent vector �
to be the operator

��D =
X
�

c�

�
�

�

�
@��� ;

where
�
�
�

�
=
�
a1
b1

� � � � �an
bn

�
and @��� = 0 whenever �� � has a negative coordinate. The reason for

the binomial coeÆcients in the formula for ��D is that they give the Leibniz formula

D(fg) =
X
�

@�(f)��D(g):

for f; g 2 F [x1; : : : ; xn]. Here are some simple examples of deations.

Example 2.2.3 Observe that

@xy has nonzero deations @xy; @x; @y; 1

@y2 has nonzero deations @y2 ; 2@y; 1:
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These correspond to cases (b) and (c) of Example 2.2.2. On the other hand, the operators of case (a)
are not deations of a single operator. As we will see, this is why case (a) is not Gorenstein. 2

De�nition 2.2.4 A subspace L � F [@1; : : : ; @n] is closed if it is �nite-dimensional over F and

closed under deation, i.e., ��(L) � L for all �.

The reader can easily check that the di�erential operators in cases (a), (b) and (c) of (2.2.1)
span closed subspaces. Here is the main result of Section 2.2 (see [MMM1] for a proof).

Theorem 2.2.5 For a solution p of (1.1.1), there is a unique closed subspace Lp � F [@1; : : : ; @n]
of dimension mult(p) such that

hf1; : : : ; fsi = ff 2 F [x1; : : : ; xn] j D(f)(p) = 0 for all solutions p and all D 2 Lpg;

where D(f)(p) means the evaluation of the polynomial D(f) at the point p. Furthermore, the

primary component of hf1; : : : ; fsi corresponding to a solution p is

Ip = ff 2 F [x1; : : : ; xn] j D(f)(p) = 0 for all D 2 Lpg;

and conversely,

Lp = fD 2 F [@1; : : : ; @n] j D(f)(p) = 0 for all f 2 Ipg:

It should not be surprising that Examples 2.2.1 and 2.2.2 are examples of this theorem. Here
is a more substantial example.

Example 2.2.6 Consider the equations

f1 = x2 + 2y2 � 2y = 0

f2 = xy2 � xy = 0

f3 = y3 � 2y2 + y = 0

from Example 1.1.1. There, we saw that the only solutions were (0; 0) and (0; 1). In [MS], it is
shown that

L(0;0) = Span(1; @x)

L(0;1) = Span(1; @x; @x2 � @y):
(2.2.2)

Thus

hf1; f2; f3i = ff 2 F [x; y] j f(0; 0) = fx(0; 0) = f(0; 1) = fx(0; 1) = 0; fxx(0; 1) = fy(0; 1)g;

and looking at the conditions for (0; 0) and (0; 1) separately gives the primary decomposition of
hf1; f2; f3i. In Section 2.3 we will describe how these operators were found. 2

Gorenstein and Curvilinear Points. We conclude Section 2.2 by explaining how special
properties of the local ring Ap can be determined from the representation given in Theorem 2.2.5.

Theorem 2.2.7 Ap is Gorenstein if and only if there is D 2 Lp whose deations span Lp.
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Proof. Let Lev
p denote the linear forms F [x1; : : : ; xn] ! F obtained by composing elements of Lp

with evaluation at p. Each such map vanishes on Ip and thus gives an element of A�
p. Hence

Lp ' Lev
p ' A�

p:

Furthermore, if D 2 Lp maps to eD 2 A�
p, then the Leibniz formula makes it easy to see that the

deation ��D maps to (x� p)� eD, where

(x� p)� = (x1 � p1)
b1 � � � (xn � pn)

bn

for p = (p1; : : : ; pn) and � = (b1; : : : ; bn). It follows that these deations span Lp if and only if
A�
p is generated by a single element as an Ap-module. In the latter case, we have a surjective

Ap-module homomorphism Ap ! A�
p which must be an isomorphism since Ap and A�

p have the
same dimension over F . Then we are done by the de�nition of Gorenstein given in Section 2.1. 2

Before stating our next result, we need the following de�nition from [MS].

De�nition 2.2.8 The order of D =
P

� c�@
� is the degree of D as a polynomial in F [@1; : : : ; @n].

A basis D1; : : : ; Dmult(p) of Lp is consistently ordered if for every r � 1, there is j � 1 such that

Span(D 2 Lp j D has order � r) = Span(D1; : : : ; Dj):

Note that every consistently ordered basis has D1 = 1. Also observe that the bases listed
in (2.2.1) and (2.2.2) are consistently ordered.

We can now characterize when Ap is curvilinear.

Theorem 2.2.9 The embedding dimension ep of Ap is the number of operators of order 1 in a

consistently ordered basis of Lp. In particular, Ap is curvilinear if and only if any such basis has

a unique operator of order 1.

Proof. Let mp be the maximal ideal of Ap. Recall from equation (1.3.5) that

ep = dimF mp=m
2
p

= #minimal generators of mp:

Also let Lrp = Span(D 2 Lp j D has order � r). Then L0
p � L1

p � � � � and, for r � 0, we have

dimF L
r
p=L

r�1
p = #operators of order r in a consistently ordered basis of Lp. (2.2.3)

We claim that there is a natural isomorphism

L1
p=L

0
p ' HomF (mp=m

2
p; F ): (2.2.4)

Assuming this for the moment, the �rst assertion of the theorem follows immediately from (2.2.3)
for r = 1 and the above formula for ep. Then the �nal assertion follows since by de�nition Ap is
curvilinear if and only if it has embedding dimension ep = 1.

To prove (2.2.4), let Mp = hx1 � p1; : : : ; xn � pni � F [x1; : : : ; xn] be the maximal ideal of p.
Then any operator D =

Pn

i=1 ai@i induces the linear map

Mp �! F
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which sends f 2Mp to D(f)(p). By the product rule, this vanishes if f 2M2
p, so that we get an

element of the dual space
HomF (Mp=M

2
p; F ):

Furthermore, it is easy to see that every element of the dual space arises in this way.
The isomorphism F [x1; : : : ; xn]=Ip ' Ap induces exact sequences

0 �! Ip �!Mp �! mp �! 0

and

0 �! HomF (mp=m
2
p; F ) �! HomF (Mp=M

2
p; F ) �! HomF (Ip=Ip \M2

p; F ) �! 0:

It follows that D =
Pn

i=1 ai@i gives an element of HomF (mp=m
2
p; F ) if and only if D vanishes on

Ip, which is equivalent to D 2 Lp. Since these operators represent L
1
p=L

0
p, the theorem follows. 2

We get the following corollary when we combine this result with Theorem 1.3.4.

Corollary 2.2.10 The matrix MT
f is non-derogatory when f is a generic linear combination of

x1; : : : ; xn if and only if for every solution p, a consistently ordered basis of Lp has a unique operator

of order 1.

Since the bases in Example 2.2.6 are consistently ordered, (2.2.2) shows that MT
f is non-

derogatory when f is a generic linear combination of x; y. Of course, we computed a speci�c
instance of this in Example 1.3.1, but now we know the systematic reason for our success.

Note also that if we apply Theorems 2.2.7 and 2.2.9 to Example 2.2.2, then we see that the
ring is Gorenstein in cases (b) and (c) (but not (a)) and curvilinear in case (c) (but not (a) and
(b)). This proves the claims made in the two bullets on page 13.

2.3 Two Algorithms

We've seen that the ideal hf1; : : : ; fsi can be described using Gr�obner bases and using conditions
on partial derivatives. As we will now explain, going from one description to the other is a simple
matter of linear algebra.

Gr�obner Bases to Partial Derivatives. If we have a Gr�obner basis for hf1; : : : ; fsi, then
we obtain the required closed subspaces Lp in a three-step process. The �rst step is to compute
the primary decomposition

hf1; : : : ; fsi =
\
p

Ip:

In particular, this means knowing a Gr�obner basis for each Ip. We will explain how to compute
such a primary decomposition in Section 4.

Given this, we �x a primary ideal Ip. We next recall a useful fact which relates Ip to the
maximal ideal Mp = hx1 � p1; : : : ; xn � pni of p in F [x1; : : : ; xn].

Lemma 2.3.1 If m = mult(p), then Mm
p � Ip.
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Proof. It suÆces to prove that mmp = f0g, where mp is the maximal ideal of Ap. By Nakayama's

Lemma, we know that that mkp 6= mk+1
p whenever mkp 6= f0g. Using

Ap � mp � m2
p � � � � � mkp � f0g;

it follows that dimF Ap � k + 1 whenever mkp 6= f0g. The lemma now follows immediately. 2

This lemma will enable us to describe Ip in terms of di�erential operators of order at most m.
However, this description works best when p = 0. So the second step is to translate so that p = 0.
Hence for the rest of our discussion, we will assume that p = 0. Thus Lemma 2.3.1 tells us that

M
m
0 � I0; m = mult(0):

The third step is to write down the di�erential operators in L0 as follows. Let B0 be the set of
remainder monomials for the Gr�obner basis of I0 and set

Monm = fx� j x� =2 B0; deg(x�) < mg:
For each x� 2 Monm, let

x� �
X

x�2B0

c��x
� mod I0 (2.3.1)

In other words,
P

x�2B0
c��x

� is the remainder of x� on division by the Gr�obner basis of I0. Then,

for each x� 2 B0, set
D� = @� +

X
x�2Monm

c��
�!

�!
@�:

where �! = a1! � � � an! for � = (a1; : : : ; an) and similarly for �!.

Proposition 2.3.2 f 2 F [x1; : : : ; xn] lies in Ip if and only if D�(f)(0) = 0 for all x� 2 B0.
Proof. Let f =

P
� a�x

�. Since Mm
0 � I0, we can assume that f =

P
deg(�)<m a�x

�. Using

(2.3.1), it is straightforward to show that

f 2 Ip () a� +
X

x�2Monm

c��a� = 0 for all x� 2 B0:

However, since

@(xÆ)(0) =

(
! if  = Æ

0 otherwise;
(2.3.2)

one easily sees that for x� 2 B0,
D�(f)(0) =

�
@� +

P
x�2Monm

c��
�!
�!
@�
��P

deg()<m ax

�
(0) = �!

�
a� +

P
x�2Monm

c��a�
�
:

The proposition now follows immediately since F has characteristic 0. 2

Here is an example of this result.

Example 2.3.3 For the polynomials of Example 2.2.6, we will show in Section 4 that the primary
decomposition is

hx2 +2y2� 2y; xy2�xy; y3� 2y2+ yi = hx2; yi \ hx2 +2(y� 1); x(y� 1); (y� 1)2i = I(0;0) \ I(0;1):
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Let's focus on I(0;1). If we translate this to the origin, we get the ideal

I0 = hx2 + 2y; xy; y2i:

The generators are a Gr�obner basis for lex order with x > y, the remainder monomials are B0 =
f1; x; yg, and the multiplicity is m = 3. Thus

Mon3 = fx2; xy; y2g:

The coeÆcients c�� are given by

x2 � 0 � 1 + 0 � x+ (�2) � y mod I0
xy � 0 � 1 + 0 � x+ 0 � y mod I0
y2 � 0 � 1 + 0 � x+ 0 � y mod I0:

so that
D1 = 1; Dx = @x; Dy = @y + (�2) 1!

2!
@x2 = @y � @x2 :

Up to a sign, this gives the basis of L(0;1) that appeared in Example 2.2.6. The treatment for L(0;0)

is even easier and is omitted. 2

We also want to remark on an alternate way to view the construction L0 = Span(D� j x� 2 B0).
Here, we are in the situation where p = 0, so that by Theorem 2.2.5, we have

I0 = ff 2 F [x1; : : : ; xn] j D�(f)(0) = 0 for all x� 2 B0g

and
L0 = fD 2 F [@1; : : : ; @n] j D�(f)(0) = 0 for all f 2 I0g:

Now we will do something audacious: switch xi with @i. This means I0 becomes an ideal

Î0 � F [@1; : : : ; @n]

and L0 becomes a subspace
L̂0 � F [x1; : : : ; xn]:

The key observation is that the pairing (2.3.2) is unchanged under xi $ @i. Thus:

L̂0 gives the polynomial solutions of the in�nitely many di�erential operators in Î0!

This is the point of view taken in Chapter 10 of [Sturmfels]. Here is an example.

Example 2.3.4 In Example 2.3.3, we showed that

I0 = hx2 + 2y; xy; y2i =) L0 = Span(1; @x; @y � @x2):

This means that under the switch x$ @x; y $ @y, the subspace

L̂0 = Span(1; x; y � x2) � F [x; y]

is the space of all polynomial solutions of the in�nitely many operators in the ideal

Î0 = h@2x + 2@y; @x@y; @
2
yi � F [@x; @y]:
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Other examples can be found in [Sturmfels]. 2

We should also note that the description of Ip given by di�erential conditions can require a lot
of space. Examples plus more eÆcient methods can be found in Section 3.3 of [MMM2].

Partial Derivatives to Gr�obner Bases. Now suppose that conversely, we are given the data
of Theorem 2.2.5. This means that for each solution p we have a closed subspace Lp of dimension
mult(p) such that

hf1; : : : ; fsi = ff 2 F [x1; : : : ; xn] j D(f)(p) = 0 for all p and D 2 Lpg:

If we pick a basis Dp;i of each Lp, then the linear forms f 7! Dp;i(f)(p) give a linear map

L : F [x1; : : : ; xn] �! Fm (2.3.3)

where m = dimF A. This map is surjective and its kernel is hf1; : : : ; fsi. Given an order > (with
some restrictions to be noted below), our goal is to �nd a Gr�obner basis of hf1; : : : ; fsi with respect
to > using the linear map (2.3.3).

The idea is to simultaneously build up the Gr�obner basis G and the set of remainder monomials
B. So we begin with both lists being empty. We then feed in monomials, beginning with 1. The
main loop of the algorithm is described as follows.

Main Loop: Given a monomial x�, compute L(x�) together with L(x�) for all x� 2 B.
� If L(x�) is linearly dependent on the L(x�), then compute a linear relation

L(x�) =
X
x�2B

a�L(x
�); a� 2 F

(hence x� �Px�2B a�x
� 2 hf1; : : : ; fsi) and add x� �Px�2B a�x

� to G.

� If L(x�) is linearly independent from the L(x�), then add x� to B.
Once this loop is done for x�, we feed in the next monomial, which is the minimal element

(with respect to >) of the set

N(x�; G) = fx j x > x�; x not divisible by any leading term of g 2 Gg: (2.3.4)

Hence we need to �nd the minimal element of N(x�; G). As explained in [BW], this is easy to do
whenever > is a lex or total degree order. The algorithm terminates when (2.3.4) becomes empty.

In [MMM1], it shown that this algorithm always terminates and that when this happens, G
is the desired Gr�obner basis and B is the corresponding set of remainder monomials. Here is an
example.

Example 2.3.5 As in Example 2.3.3, consider p = (0; 0) and L0 = Span(1; @x; @y � @x2). It
follows that I0 is the kernel of the map

L : F [x; y] �! F 3
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de�ned by L(f) = (f(0; 0); fx(0; 0); fy(0; 0) � fxx(0; 0)). If we use lex order with x > y, then the
above algorithm starts with B = G = ; and proceeds as follows:

x� L(x�) B G min(N(x�; G))

1� (1; 0; 0) f1g ; y

y� (0; 0; 1) f1; yg ; y2

y2 (0; 0; 0) f1; yg fy2g x

x� (0; 1; 0) f1; y; xg fy2g xy

xy (0; 0; 0) f1; y; xg fy2; xyg x2

x2 (0; 0;�2) f1; y; xg fy2; xy; x2 + 2yg none!

(2.3.5)

In this table, an asterisk denotes those monomials which become remainder monomials. The other
monomials are leading terms of the Gr�obner basis. It is worth checking the steps of the algorithm
to make sure you see how it is working. 2

A proof of correctness, together with a complexity analysis, can be found in [MMM1].

2.4 Ideals of Points and Basis Conversion

We conclude Section 2 by observing that the algorithm illustrated in Example 2.3.5 applies to
many situations besides partial derivatives. The key point is that if

L : F [x1; : : : ; xn] �! Fm

is any surjective linear map whose kernel is an ideal I , then the algorithm described in the discussion
following (2.3.3) gives a Gr�obner basis for I . Here are two situations where this is useful.

Ideals of Points. Suppose we have a �nite list of points p1; : : : ; pm 2 Fn. Then we want to
compute a Gr�obner basis of the ideal

I = ff 2 F [x1; : : : ; xn] j f(p1) = � � � = f(pm) = 0g

consisting of all polynomials which vanish at p1; : : : ; pm. This is now easy, for the points give the
linear map L : F [x1; : : : ; xn]! Fm de�ned by

L(f) = (f((p1); : : : ; f(pm))

whose kernel is the ideal I . Furthermore, it is easy to see that L is surjective (see the proof of
Theorem 2.10 of Chapter 2 of [CLO2] ). Thus we can �nd a Gr�obner basis of I using the above
algorithm.

Example 2.4.1 Consider the points (0; 0); (1; 0); (0; 1) 2 F 2. This gives L : F [x; y]! F 3 de�ned
by

L(f) = (f(0; 0); f(1; 0); f(0; 1)):

If you apply the algorithm for lex order with x > y as in Example 2.3.5, you will obtain a table
remarkably similar to (2.3.5), except that the Gr�obner basis will be fy2 � y; xy; x2 � xg. We
recommend this exercise to the reader. 2

A more complete treatment of this problem appears in [MMM1]. The harder problem of
computing the homogeneous ideal of a �nite set of points in projective space is discussed in [ABKR].
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Basis Conversion. Suppose that we have a Gr�obner basis G0 for hf1; : : : ; fsi with respect to
one order >0 and want to �nd a Gr�obner basis G with respect to a second order >.

We can do this as follows. Let B0 be the set of remainder mononomials with respect to G0.
Then taking the remainder on division by G0 gives a linear map

L : F [x1; : : : ; xn] �! Span(B0) ' Fm:

The kernel is hf1; : : : ; fsi and the map is surjective since L(x�) = x� for x� 2 B0. Then we can
apply the above method to �nd the desired Gr�obner basis G. This is the basis conversion algorithm
of [FGLM].

Example 2.4.2 By Example 2.3.5, we know that fy2; xy; x2+xyg is a Gr�obner basis with respect
to lex order with x > y. If you apply the above method to convert this to lex order with y > x,
you will obtain a table similar to (2.3.5) which gives the new Gr�obner basis fx3; y + 1

2
x2g. 2

Besides ideals of points and basis conversion, this algorithm has other interesting applications.
See [MMM1] for details.

3 Resultants

3.1 Solving Equations

The method for solving equations discussed in Section 1 assumed that we had a Gr�obner basis avail-
able. In this section, we will see that when our equations have more structure, we can sometimes
compute the required matrices directly.

We will work in F [x1; : : : ; xn], F algebraically closed, but we will now assume that we have n
equations in n unknowns, i.e.,

f1(x1; : : : ; xn) = � � � = fn(x1; : : : ; xn) = 0: (3.1.1)

B�ezout's Theorem tells us that if fi has degree di and f1; : : : ; fn are generic, then (3.1.1) has
precisely � = d1 � � � dn solutions of multiplicity 1.

We �rst describe a solution method due to Auzinger and Stetter [AS]. The idea is to construct
a �� � matrix whose eigenvectors will determine the solutions. For this purpose, let

d = d1 + � � �+ dn � n+ 1 (3.1.2)

and divide the monomials of degree � d into n+ 1 disjoint sets as follows:

Sn = fx : deg(x) � d; xdnn divides xg
Sn�1 = fx : deg(x) � d; xdnn doesn't divide x but x

dn�1

n�1 doesg
...

S0 = fx : deg(x) � d; xdnn ; : : : ; xd11 don't divide xg:

In particular, note that

S0 = fxa11 � � �xann j 0 � ai � di � 1 for i = 1; : : : ; ng: (3.1.3)
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Since S0 plays a special role in what follows, we will use x� to denote elements of S0 and x� to
denote elements of S1 [ � � � [ Sn. Then observe that

if x� 2 S0, then x� has degree � d� 1;

if x� 2 Si, i > 0, then x�=xdii has degree � d� di;

where the �rst assertion uses d� 1 = d1 + � � �+ dn � n =
Pn

i=1(di � 1).
Now let f0 = a1x1 + � � �+ anxn, ai 2 F , and consider the equations:

x� f0 = 0 for all x� 2 S0

(x�=xd11 ) f1 = 0 for all x� 2 S1

...

(x�=xdnn ) fn = 0 for all x� 2 Sn.

Since the x� f0 and x�=xdii fi have degree � d, we can write these polynomials as linear combina-
tions of the x� and x� . We will order these monomials so that the elements x� 2 S0 come �rst,
followed by the elements x� 2 S1 [ � � � [ Sn. This gives a square matrix M0 such that

M0

0
BBBBBBBB@

x�1

x�2

...
x�1

x�2

...

1
CCCCCCCCA

=

0
BBBBBBBB@

x�1 f0
x�2 f0

...

x�1=xd11 f1
x�2=xd11 f1

...

1
CCCCCCCCA
; (3.1.4)

where, in the column on the left, the �rst two elements of S0 and the �rst two elements of S1 are
listed explicitly. The situation is similar for the column on the right.

We next partition M0 so that the rows and columns of M0 corresponding to elements of S0 lie
in the upper left hand corner. This gives

M0 =

�
M00 M01

M10 M11

�
; (3.1.5)

where M00 is a ��� matrix for � = d1 � � � dn, and M11 is also a square matrix. One can show that
M11 is invertible for a generic choice of f1; : : : ; fn. Hence we can de�ne the �� � matrix

fMf0 =M00 �M01M
�1
11 M10: (3.1.6)

Also, given a point p 2 Fn, let p� be the column vector (p�1 ; p�2 ; : : :)T obtained by evaluating all
monomials in S0 at p (where T means transpose).

Theorem 3.1.1 Let f1; : : : ; fn be generic polynomials of total degree d1; : : : ; dn and construct fMf0

as in (3.1.6) with f0 = a1x1+ � � �+anxn. Then p
� is an eigenvector of fMf0 with eigenvalue f0(p)

whenever p is a solution of (3.1.1). Furthermore, the p� are linearly independent as p ranges over

all solutions of (3.1.1).
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Proof. Let p� be the column vector (p�1 ; p�2 ; : : :)T given by evaluating all monomials in S1[� � �[Sn
at p. Then evaluating (3.1.4) at a solution p of (3.1.1) gives

M0

�
p�

p�

�
=

�
f0(p)p

�

0

�
;

which in terms of (3.1.5) becomes�
M00 M01

M10 M11

��
p�

p�

�
=

�
f0(p)p

�

0

�
: (3.1.7)

It is straightforward to show that (3.1.7) implies the equation

fMf0 p
� = f0(p)p

�; (3.1.8)

so that for each solution p, f0(p) is an eigenvalue of fMf0 with p� as eigenvector. For a generic
choice of a1; : : : ; an, f0 = a1x1+� � �+anxn takes distinct values at the solutions, i.e., the eigenvalues
f0(p) are distinct. This shows that the corresponding eigenvectors p

� are linearly independent. 2

We can now solve (3.1.1) by the method of Section 1.3. We know that there are � = d1 � � � dn
solutions p. Furthermore, the values f0(p) are distinct for a generic choice of f0 = a1x1+� � �+anxn.
Then Theorem 3.1.1 implies that the � � � matrix fMf0 has � eigenvectors p�. Hence all of the

eigenspaces must have dimension 1, i.e., fMf0 is non-derogatory.
Also notice that 1 2 S0 by (3.1.3). It follows that we can assume that every p� is of the form

p� = (1; p�(2); : : : ; p�(�))T :

Thus, once we compute an eigenvector ~v of fMf0 for the eigenvalue f0(p), we know how to rescale
~v so that ~v = p�.

As in Section 1.3, the idea is to read o� the solution p from the entries of the eigenvector p�.
If fi has degree di > 1, then xi 2 S0, so that pi appears as a coordinate of p�. Hence we can
recover all coordinates of pi except for those corresponding to equations with di = 1. These were
called the \missing variables" in Section 1.3. In this situation, the missing variables correspond to
linear equations. Since we can �nd the coordinates of the solution p for all of the other variables,
we simply substitute these known values into the linear equations corresponding to the missing
variables. Hence we �nd all coordinates of the solution by linear algebra. Details of this procedure
are described in Exercise 5 of Section 3.6 of [CLO2].

All of this is very nice but seems to ignore the quotient algebra

A = F [x1; : : : ; xn]=hf1; : : : ; fni:
In fact, what we did above has a deep relation to A as follows.

Theorem 3.1.2 If f1; : : : ; fn are generic polynomials of total degree d1; : : : ; dn, then the cosets of

the monomials

S0 = fxa11 � � �xann j 0 � ai � di � 1 for i = 1; : : : ; ng
form a basis of the quotient algebra A. Furthermore, if f0 = a1x1 + � � � + anxn and fMf0 is the

matrix constructed in (3.1.6) using f0; f1; : : : ; fn, then

fMf0 =MT
f0
;

where Mf0 is the matrix of the multiplication map mf0 : A! A relative to the basis given by S0.
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Proof. Recall from B�ezout's Theorem that when f1; : : : ; fn are generic, the equations (3.1.1) have
� = d1 � � � dn solutions of multiplicity 1 in Fn. It follows that A has dimension � over F . Since
this is also the cardinality of S0, the �rst part of the theorem will follow once we show that the
cosets of the monomials in S0 are linearly independent.

Write the elements of S0 as x�(1); : : : ; x�(�) and suppose we have a linear relation among the
cosets [x�(j)], say

c1[x
�(1)] + � � �+ c�[x

�(�)] = 0:

Evaluating this equation at a solution p makes sense and implies that

c1p
�(1) + � � �+ c�p

�(�) = 0: (3.1.9)

In the generic case, our equations have � = d1 � � � dn solutions, so that (3.1.9) gives � equations
in � unknowns c1; : : : ; c�. But the coeÆcients of the rows give the transposes of the vectors p�,
which are linearly independent by Theorem 1.1. It follows that c1 = � � � = c� = 0. This proves
that the cosets [x�(1)]; : : : ; [x�(�)] are linearly independent. Thus S0 gives a basis of A as claimed.

For the second assertion of the theorem, observe that equation (2.1) shows that

MT
f0
p� = f0(p)p

�

for each solution p. Comparing this to (3.1.8), we get

MT
f0
p� = fM p�

for all solutions p. Since f1; : : : ; fn are generic, we have � solutions p, and the corresponding
eigenvectors p� are linearly independent by Theorem 3.1.1. This implies MT

f0
= fMf0 . 2

It is satisfying to see how the method described in this section relates to what we did in
Section 1. However, there is a lot more going on here. Here are a couple of items of interest.

Multiplication Matrices. By setting f0 = xi in Theorem 3.1.2, we can construct the matrix
of multiplication by xi as Mxi = fMT

xi
. However, it is possible to compute all of these maps

simultaneously by using f0 = u1x1+� � �+unxn, where u1; : : : ; un are variables. In the decomposition
(3.1.5), the matrices M10 and M11 don't involve the coeÆcients of f0. Thus, we can still form the

matrix fMf0 from (3.1.6), and it is easy to see that

fMT
f0
= u1Mx1 + � � �+ unMxn :

Thus one computation gives all of the Mxi .

Solving via Multivariate Factorization. As above, suppose that f0 = u1x1 + � � � + unxn,
where u1; : : : ; un are variables. In this case, det(fMf0) becomes a polynomial in F [u1; : : : ; un]. The

results of this section imply that for f1; : : : ; fn generic, the eigenvalues of fMf0 are f0(p) as p ranges
over all solutions of (3.1.1). Since all of the eigenspaces have dimension 1, we obtain

det(fMf0) =
Y
p

(u1p1 + � � �+ unpn): (3.1.10)

It follows that if we can factor det(fMf0) into irreducibles in F [u1; : : : ; un], then we get all solutions
of (3.1.1). We will see in Section 3.2 that (3.1.10) is closely related to resultants.
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Ideal Membership. Given f 2 F [x1; : : : ; xn], how do we tell if f 2 hf1; : : : ; fni? This is the
Ideal Membership Problem. How do we do this without a Gr�obner basis? One method (probably
not very eÆcient) uses the above matrices Mxi as follows:

f 2 hf1; : : : ; fni () f(Mx1 ; : : : ;Mxn) is the zero matrix:

To prove this criterion, note that f(Mx1 ; : : : ;Mxn) =Mf since theMxi commute. Using mf ([1]) =
[f ] 2 A, it follows easily that Mf is the zero matrix if and only if f is in the ideal.

Sparse Polynomials. It is also possible to develop a sparse version of the solution method
described in this section. The idea is that one �xes in advance the terms which appear in each
fi and then considers what happens when fi is generic relative to these terms. One gets results
similar to Theorems 3.1.1 and 3.1.2, and there are also nice relations to polyhedral geometry. This
material is discussed in Chapter 7 of [CLO2].

Duality. The assumption that f1; : : : ; fn have only �nitely many solutions in Fn implies that
these polynomials form a regular sequence. This allows us to apply the duality theory of complete
intersections. There are also interesting relations with multidimensional residues. This material is
discussed in [EM1] and [EM2].

Finally, Section 3.2 will discuss relations with the theory of multivariate resultants.

3.2 The U-Resultant

The classical multivariable resultant Resd0;:::;dn in an irreducible polynomial in the coeÆcients of
n+ 1 homogeneous polynomials

F0; : : : ; Fn 2 F [x0; : : : ; xn]

of degrees d0; : : : ; dn with the property that number

Resd0;:::;dn(F0; : : : ; Fn) = 0

if and only if the Fi have a common solution in the projective space Pn(F ) (as usual, F = F ).
This resultant can also has an aÆne version as follows. If we dehomogenize Fi by setting x0 = 1,

then we get polynomials fi 2 F [x1; : : : ; xn] of degree at most di. Since Fi and fi have the same
coeÆcients, we can write the resultant as

Resd0;:::;dn(f0; : : : ; fn):

Then the vanishing of this resultant means that either the equations f0 = � � � = fn have a solution
in Fn or they have a solution \at in�nity" (i.e., a projective solution with x0 = 0).

In the situation of Section 3.1, we have n polynomials f1; : : : ; fn of degrees d1; : : : ; dn in
x1; : : : ; xn. To compute a resultant, we need one more equation. Not surprisingly, we will use

f0 = a1x1 + � � �+ anxn:

We will usually assume ai 2 F though (as illustrated at the end of Section 3.1) it is sometimes
useful to replace ai with a variable ui.
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In order to compute the resultant Res1;d1;:::;dn(f0; f1; : : : ; fn), we need to study the behavior of
the system f1 = � � � = fn = 0 at 1. Write

fi =

diX
j=0

fi;j

where fi;j is homogeneous of degree j in x1; : : : ; xn. Then fi homogenizes to

Fi =

diX
j=0

fi;jx
di�j
0

of degree di in x0; x1; : : : ; xn. Then (3.1.1) has a solution at 1 when the homogenized system

F1 = � � � = Fn = 0

has a nontrivial solution with x0 = 0.
The following result relates solutions at 1 to the algebra A = F [x1; : : : ; xn]=hf1; : : : ; fni.

Lemma 3.2.1 The following are equivalent:

f1 = � � � = fn = 0 has no solutions at 1 () Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) 6= 0

() A has dimension d1 � � � dn over F:

Proof. Note that Fi reduces to fi;di when x0 = 0. Thus the fi have a solution at 1 if and only if
the system of homogeneous equations

f1;d1 = � � � = fn;dn = 0

has a nontrivial solution. This gives the �rst equivalence. The second uses B�ezout's Theorem and
some facts from algebraic geometry. See Section 3 of Chapter 3 of [CLO2] for the details. 2

When there are no solutions at 1, it follows that we get our algebra A of dimension d1 � � � dn
over F . But unlike Section 3.1, the solutions may have multiplicities > 1. In this case, we can
relate resultants and multiplication maps as follows.

Theorem 3.2.2 If f0 = u1x1 + � � �+ unxn and (3.1.1) has no solutions at 1, then

Res1;d1;:::;dn(f0; f1; : : : ; fn) = Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) det(mf0)

= Resd1;:::;dn(f1;d1 ; : : : ; fn;dn)
Y
p

(u1p1 + � � �+ unpn)
mult(p):

and

Res1;d1;:::;dn(u� f0; f1; : : : ; fn) = Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) CharPolymf0
(u)

= Resd1;:::;dn(f1;d1 ; : : : ; fn;dn)
Y
p

�
u� (u1p1 + � � �+ unpn)

�mult(p)
:
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Proof. In each case, the �rst equality uses Theorem 3.4 of Chapter 3 of [CLO2] and the second
equality uses Proposition 1.5.1 of these notes. 2

While this is nice (and will have some unexpected consequences when we discuss Galois theory
in Section 5), the relation between resultants and what we did in Section 3.1 goes much deeper.
We can explore this as follows.

Computing Resultants. First recall that the method given in Section 3.1 for computing
multiplication maps used the equality fMf0 =MT

f0

from Theorem 3.1.2. This in turn requires that all solutions have multiplicity 1 and that det(M11) 6=
0 (since det(M11)

�1 is used in the construction of fMf0). This relates to resultants as follows.
A standard method for computing Res1;d1;:::;dn(f0; f1; : : : ; fn) involves the quotient of two de-

terminants. In our situation, the relevant formula is

det(M0) = Res1;d1;:::;dn(f0; f1; : : : ; fn) det(M
0
0); (3.2.1)

whereM0 is precisely the matrix appearing in (3.1.4) andM
0
0 is the submatrix described in Section 4

of Chapter 3 of [CLO2]. It follows that

Res1;d1;:::;dn(f0; f1; : : : ; fn) =
det(M0)

det(M 0
0)

whenever det(M 0
0) 6= 0. The subtle point is that det(M0) and det(M 0

0) can both vanish even
though Res1;d1;:::;dn(f0; f1; : : : ; fn) is nonzero. So to calculate the resultant usingM0, we de�nitely

need det(M 0
0) 6= 0. Yet for fMf0 , we need det(M11) 6= 0. Here is the nice relation between these

determinants.

Proposition 3.2.3 We have

det(M11) = Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) det(M
0
0):

Furthermore, if det(M11) 6= 0, then fMf0 and mf0 have the same determinant and same character-

istic polynomial.

Proof. First observe that by (3.1.4) and the de�nition of fMf0 , we have

det(M0) = det

�
I M01M

�1
11

0 I

�
det

�
M00 M01

M10 M11

�
= det

�fMf0 0
M10 M11

�
= det(fMf0) det(M11):

whenever det(M11) 6= 0. Using this togther with (3.2.1) and Theorems 3.2.2 and 3.1.2, we obtain

det(fMf0) det(M11) = det(M0)

= Res1;d1;:::;dn(f0; f1; : : : ; fn) det(M
0
0)

= Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) det(mf0) det(M
0
0)

= Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) det(fMf0) det(M
0
0)

when f1; : : : ; fn are suÆciently generic. Cancelling det(fMf0) (which is nonzero generically) shows
that the equality det(M11) = Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) det(M

0
0) holds generically. Since each side

is a polynomial in the coeÆcients of the fi, this equality must hold unconditionally.

29



For the �nal assertion of the proposition, observe that

det(M11) 6= 0 =) Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) 6= 0 (3.2.2)

by what we just proved. It follows that both fMf0 and mf0 are de�ned when det(M11) 6= 0.
Unfortunately, we no longer know that S0 provides a basis of A, and even if it does, the proof thatfMT

f0
=Mf0 given in Theorem 3.1.2 breaks down since the eigenvectors p� no longer span A when

there are solutions of multiplicity > 1. But we can still relate det(fMf0) and det(mf0 ) as follows. If
det(M11) 6= 0, then (3.2.1), (3.2.2), Theorem 3.2.2 and the �rst assertion of the proposition imply
that

det(M0) = det(mf0) det(M11):

However, we showed above that det(M0) = det(fMf0) det(M11) when det(M11) 6= 0. The desired
equality now follows immediately, and we get the statment concerning characteristic polynomials
by replacing f0 with u� f0. 2

Proposition 3.2.3 shows that the assumption det(M11) 6= 0 needed to de�ne fMf0 in Section 3.1
guarantees three things:

� Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) 6= 0, so that (3.1.1) has no solutions at 1.

� det(M 0
0) 6= 0, so that M0 and M 0

0 can be used to compute Res1;d1;:::;dn(f0; f1; : : : ; fn).

� Even if there are multiplicities, fMf0 and mf0 have the same characteristic polynomial.

So the link between Section 3.1 and resultants is very strong.
For the experts, note that (3.2.1) and Proposition 3.2.3 imply that if det(M 0

0) 6= 0, then

Res1;d1;:::;dn(f0; f1; : : : ; fn) =
detM0

detM 0
0

Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) =
detM11

detM 0
0

;

where M 0
0 is a submatrix of M11, which in turn is a submatrix of M0. So M0 allows us to compute

not one but two resultants. Has this been noticed before?

Genericity. In Section 3.1, we required that f1; : : : ; fn be \generic", which upon careful
rereading means �rst, that the system (3.1.1) has d1 � � � dn solutions of multiplicity 1, and second,
that det(M11) 6= 0. In terms of resultants, this means the following:

� Resd1;:::;dn(f1;d1 ; : : : ; fn;dn) 6= 0.

� Resd�1;d1;:::;dn(det
�
@fi
@xj

�
; f1; : : : ; fn) 6= 0, where d is de�ned in (3.1.2).

� det(M 0
0) 6= 0.

The �rst item guarantees that A has the correct dimension by Lemma 3.2.1 and the second guaran-
tees that the Jacobian is nonvanishing at all solutions, so that every solution has multiplicity 1 by
the implicit function theorem. Finally, the �rst and third conditions are equivalent to det(M11) 6= 0
by Proposition 3.2.3.

One historical remark is that while the formula (3.2.1) is due to Macaulay in 1902, many ideas
of Section 3.2 are present in the work of Kronecker in 1882. For example, Kronecker de�nes

Res1;d1;:::;dn(u� f0; f1; : : : ; fn)
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and shows that as a polynomial in u, its roots are f0(p) for p a solution of (3.1.1). He also noted
that the discriminant condition of the second bullet is needed to get solutions of multiplicity 1 and
that when this is true, the ideal hf1; : : : ; fni is radical (see pp. 276 and 330 of [Kronecker, Vol. II]).

4 Factoring

4.1 Factoring over Number Fields

Near the end of Section 3.1, we gave the formula (3.1.10)

det(fMf0) =
Y
p

(u1p1 + � � �+ unpn)

where f0 = u1x1 + � � �+ unxn. The point was that we could compute the left-hand side, so that if
we knew how to factor multivariable polynomials over an algebraically closed �eld, then we could
�nd all of the solutions. Of course, such factoring is very diÆcult. But as we will now see, it is
sometimes possible to turn the tables and use the �nite algebras and their multiplication maps to
do factoring over number �elds. We begin with a lovely result of Dedekind.

Dedekind Reciprocity. Suppose that f(x); g(x) 2 Q[x] are irreducible with roots �; � 2 C

such that f(�) = g(�) = 0. Then factor f(x) into irreducibles over Q(�), say

f(x) = f1(x) � � � fr(x); fi(x) 2 Q(�)[x]: (4.1.1)

The fi(x) are distinct (i.e., none is a constant multiple of any of the others) since f is separable.
Then the Dedekind Reciprocity Theorem describes the factorization of g(x) over Q(�) as follows.

Theorem 4.1.1 Given the above factorization of f(x) into irreducibles over Q(�), the factoriza-

tion of g(x) into irreducibles over Q(�) can be written as

g(x) = g1(x) � � � gr(x); gi(x) 2 Q(�)[x]

where
deg(f1)

deg(g1)
=

deg(f2)

deg(g2)
= � � � = deg(fr)

deg(gr)
=

deg(f)

deg(g)
:

Proof. Consider the Q-algebra
A = Q[x; y]=hf(x); g(y)i:

Since y 7! � induces Q[y]=hg(y)i ' Q(�) and the fi(x) are distinct irreducibles, we get

A ' Q(�)[x]=hf(x)i '
rY

i=1

Ki; (4.1.2)

where Ki = Q(�)[x]=hfi (x)i is a �eld. Since [Ki :Q(�)] = deg(fi), the degree of Ki over Q is

[Ki :Q] = [Ki :Q(�)][Q (�) : Q] = deg(fi) deg(g): (4.1.3)

In the same way, the factorization of g(y) into r0 irreducibles gi(y) over Q(�) ' Q[x]=hfi gives
an isomorphism between A and a product of s �elds A 'Qr0

i=1K
0
i such that

[Ki :Q] = deg(gi) deg(f): (4.1.4)
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However, the decomposition of A into a product of �elds is unique up to isomorphism. Hence we
must have r = r0 and (after a suitable permutation) Ki ' K 0

i. It follows that (4.1.3) and (4.1.4)
must equal for all i, and the result follows. 2

According to [Edwards], Dedekind discovered this result in 1855, though his version wasn't
published until 1982. Kronecker found this theorem independently and stated it in his university
lectures. Theorem 4.1.1 was �rst published by Kneser in 1887.

A Factorization Algorithm. The algebra A used in the proof of Theorem 4.1.1 can also be
used to construct the factorization of f(x) over Q(�). The idea is to compute

�(u) = CharPolymf0
(u); f0 = x+ ty;

for a carefully chosen t 2 Q. This polynomial in Q[u] can be computed using the methods of
Section 1 and factored using known algorithms for factoring over Q. Kronecker observed that
these factors determine the factorization of f(x) over Q(�).

To see how this works, we �rst need to see how the factorization of f(x) inuences �(u). Under
the isomorphism Q(�) ' Q[y]=hg(y)i, a polynomial h(x; y) 2 Q[x; y] gives h(x; �) 2 Q(�)[x], and
all polynomials in Q(�)[x] can be represented this way. In particular, the factorization (4.1.1) of
f(x) over Q(�) is written

f(x) = f1(x; �) � � � fr(x; �) 2 Q(�)[x]; fi(x; y) 2 Q[x; y]; (4.1.5)

and the decomposition (4.1.2) can be written

A '
rY

i=1

Ki =

rY
i=1

Q[x; y]=hg(y); fi(x; y)i: (4.1.6)

This decomposition induces a factorization

�(u) =

rY
i=1

�i(u) (4.1.7)

over Q, where �i(u) is the characteristic polynomial of mf0 on Ki.

Theorem 4.1.2 If f0 = x+ ty takes distinct values at the solutions of f(x) = g(y) = 0, then for

all i = 1; : : : ; r, �i(u) is irreducible over Q and the irreducible factor fi(x; �) from (4.1.5) is

fi(x; �) = GCD(�i(x+ t�); f(x));

where the GCD is computed in Q(�)[x].

Proof. We will prove the irreducibility of �i(u) using the methods introduced in Section 1. If n =
deg(f(x)) and m = deg(g(y)), then B�ezout's Theorem implies that the equations f(x) = g(y) = 0
have at most nm solutions in x and y counted with multiplicity. But in fact there are exactly nm
solutions since f(x) and g(y) are separable. It follows that all of the multiplicites are 1.

By assumption, f0 = x+ ty takes distinct values at all solutions of f(x) = g(y) = 0. Since they
have multiplicity 1, it follows that mf0 is non-derogatory. Then the single-variable representation
given by Proposition 1.4.1 implies the map sending u to [x+ ty] 2 A induces an isomorphism

Q[u]=h�(u)i ' A
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since �(u) is the characteristic polynomial of multiplication by f0 = x+ ty on A. Notice also that

Disc(�(u)) 6= 0

since the eigenvalues all have multiplicity 1. This implies that �(u) is a product of distinct
irreducibles. Such a factorization gives a decomposition of Q[u]=h�(u)i ' A into a product of
�elds. This decomposition must coincide with (4.1.6) since each Ki is a �eld. It follows that
(4.1.7) is the irreducible factorization of �(u).

We next observe that fi(x; �) divides �i(x+ t�) in Q(�)[x]. By the Cayley-Hamilton Theorem,
�i(mf0) is the zero linear map on Ki = Q[x; y]=hg(y); fi(x; y)i since �i(u) is the characteristic
polynomial of mf0 on Ki. Applying this to [1] 2 Ki, we get

[0] = �i(mf0)([1]) = [�i(f0)]

in Ki = Q[x; y]=hg(y); fi(x; y)i. This implies

�i(x + ty) 2 hg(y); fi(x; y)i � Q[x; y]: (4.1.8)

Then the substitution y 7! � gives

�i(x+ t�) 2 hfi(x; �)i � Q(�)[x]:

Since fi(x; �) divides f(x) by (4.1.5), we conclude that fi(x; �) divides the GCD in the statement
of the theorem.

To see that fi(x; �) = GCD(�i(x+t�); f(x)), note that f(x) =
Qr

i=1 fi(x; �) divides �(x+t�) =Qr

i=1�i(x+ t�). Thus
f(x) = GCD(�(x+ t�); f(x)):

However, we proved above that �(u) has distinct roots, so that the same is true for �(x+ t�). It
follows that in the factorization �(x+ t�) =

Qr

i=1�i(x+ t�), the factors �i(x+ t�) are mutually
relatively prime. Hence the above GCD calculuation may be written as

f(x) =

rY
i=1

GCD(�i(x + t�); f(x)):

In other words,
rY

i=1

fi(x; �) =

rY
i=1

GCD(�i(x+ t�); f(x)):

Since fi(x; �) divides GCD(�i(x+ t�); f(x)) for each i, we get the desired equality. 2

This theorem leads to the following algorithm for factoring f(x) over Q(�):

� Pick a random t 2 Q and compute �(u) = CharPolymf0
(u) for f0 = x + ty. Also compute

Disc(�(u)).

� If Disc(�(u)) 6= 0, then factor �(u) =
Qr

i=1�i(u) into irreducibles in Q[u] and for each i

compute GCD(�i(x+ t�); f(x)) in Q(�)[x]. This gives the desired factorization.

� If Disc(�(u)) = 0, then pick a new t 2 Q and return to the �rst bullet.
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Since Disc(�(u)) 6= 0 if and only if x+ ty takes distinct values at the solutions of f(x) = g(y) = 0,
Theorem 4.1.2 implies that the second bullet correctly computes the required factorization when
the discriminant is nonzero. Notice that it only uses the Euclidean algorithm in Q(�)[x], which
can be done constructively using the representation Q(�) ' Q[y]=hg(y)i.

As for the third bullet, it is an easy exercise to show that number of t 2 Q which satisfy the
equation Disc(�(u)) = 0 is bounded above by 1

2
nm(nm � 1) (n = deg(f(x)), m = deg(g(y))).

Thus the third bullet can occur at most 1
2
nm(nm� 1) times. It follows that the above algorithm

is deterministic.
An alternate approach would be to follow what Kronecker does on pages 258{259 of [Kronecker,

Vol. II] and regard t as a variable in f0 = x + ty. Then �(u) becomes a polynomial �(u; t) 2
Q[x; t]. If one can factors �(u; t) into irreducibles Q[u; t], say �(u; t) =

Qr
i=1�i(u; t), then it is

straightforward to recover fi(x; �) from �i(x + t�; t). A rigorously constructive verion of this is
described in [Edwards]. We should also mention that for Kronecker, the crucial observation (4.1.8)
was a consequence of the properties of resultants (see page 330 of [Kronecker Vol. II]).

4.2 Finite Fields and Primitive Elements

Here, we will give two further applications of �nite commutative algebras.

Factoring over Finite Fields. We begin with a brief description for factoring a polynomial
f(x) 2 Fq [x], where Fq is a �nite �eld with q = p` elements. We will use the algebra

A = Fq [x]=hf(x)i

and the Frobenius map
F : A! A; F (a) = aq:

This map is linear over Fq and can be used to detect whether or not f(x) is irreducible as follows.

Proposition 4.2.1 If f(x) has no multiple roots (i.e., GCD(f(x); f 0(x)) = 1), then the dimension

of the eigenspace EA(F; 1) is the number of irreducible factors of f(x).

Proof. Since f(x) has no multiple roots, a factorization f(x) = f1(x) � � � fr(x) into irreducible
polynomials in Fq [x] gives an algebra isomorphism

A '
rY
i=1

Ki =

rY
i=1

Fq [x]=hfi(x)i

which is compatible with the Frobenius map F . If a 2 Ki, then since Ki is a �eld, we have

F (a) = a () aq = a () a 2 Fq :

It follows that on Ki, the eigenvalue 1 has a 1-dimensional eigenspace EKi
(F; 1). Since the

eigenspace EA(F; 1) is the direct sum of the EKi
(F; 1), the result follows. 2

Here is a simple example of this result.

Example 4.2.2 Let f(x) = x5 + x4 + 1 2 F2 [x]. One easily sees that f(x) is separable. Then
A = F2 [x]=hf(x)i is a vector space over F2 of dimension 5 with basis [1]; [x]; [x2]; [x]3; [x4], which
for simplicity we write as 1; x; x2; x3; x4.
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Note that F : A ! A is the squaring map since q = 2. To compute the matrix of F , we apply
F to each basis element and represent the result in terms of the basis:

1 7! 1

x 7! x2

x2 7! x4

x3 7! x6 = 1 + x+ x4

x4 7! x8 = 1 + x+ x2 + x3 + x4:

Here, x6 = 1+x+x4 means that 1+x+x4 is the remainder of x6 on division by f(x) = x5+x4+1,
and similarly for the last line. Hence the matrix of F � 1A is0

BBBB@
1 0 0 1 1
0 0 0 1 1
0 1 0 0 1
0 0 0 0 1
0 0 1 1 1

1
CCCCA�

0
BBBB@
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1
CCCCA =

0
BBBB@
0 0 0 1 1
0 1 0 1 1
0 1 1 0 1
0 0 0 1 1
0 0 1 1 0

1
CCCCA

(remember that we are in charactersitic 2). This matrix has rank 3 since the �rst column is zero
and the sum of the last three columns is zero. Hence we have two linearly independent eigenvectors
for the eigenvalue 1. By Proposition 4.2.1, f(x) is not irreducible over F2 . 2

Besides giving the number of irreducible factors of f(x), one can also use the eigenspaceEA(F; 1)
to construct the irreducible factorization of f(x). The rough idea is that if [h(x)] 2 A is a nonzero
element of EA(F; 1), then GCD(h(x); f(x)) is a factor of f and (if h(x) chosen correctly) is actually
one of the irreducible factors of f(x). This is Berlenkamp's Algorithm, which is described in
Section 4.1 of [LN].

Theorem of the Primitive Element. The single-variable representation used in the proof
of Theorem 4.1.2 may remind the reader of the Theorem of the Primitive Element. As we will now
show, this is no accident.

Theorem 4.2.3 Let F � L = F (�1; : : : ; �n) be an extension such that F is in�nite and each �i
is separable over F . Then there are t1 : : : ; tn 2 F such that

L = F (�); � = t1�1 + � � �+ tn�n:

Proof. Let fi be the minimal polynomial of �i over F and let

A = F [x1; : : : ; xn]=hf1(x1); : : : ; fn(xn)i:
Note that we use a separate variable xi for each polynomial fi. Then arguing as in the proof of
Theorem 4.1.2, one easily sees that by B�ezout's Theorem, all solutions of

f1(x1) = f2(x2) = � � � = fn(xn) = 0 (4.2.1)

have multiplicity 1. Since F is in�nite, we can pick t1; : : : ; tn 2 F such that f0 = t1x1 + � � �+ tnxn
takes distinct values at all solutions of (4.2.1). It follows that mf0 : A ! A is non-derogatory, so
that by Proposition 1.4.1, the map u 7! [t1x1 + � � �+ tnxn] 2 A induces a surjection

F [u] �! A:
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But xi 7! �i induces well-de�ned map A ! L which is a surjection since L = F (�1; : : : ; �n).
Then the theorem follows since the composed map F [u] ! A ! L is surjective and maps u to
� = t1�1 + � � �+ tn�n. 2

Here is an example to illustrate the role of separability.

Example 4.2.4 Let F = Fp (t; u), where t and u are variables, and let F � L be the �eld obtained
by adjoining the the pth roots of t and u. It is easy to see that F � L is purely inseparable of
degree p2 and that L 6= F (�) for all � 2 L (the latter follows from � 2 L) �p 2 F ).

Hence the single-variable representation of Proposition 1.4.1 must fail. To see how this works,
�rst observe that

L ' F [x; y]=hxp � t; yp � ui
is the algebra we used in the proof of Theorem 4.2.3. In the algebraic closure F of F , the only
solution of

xp � t = yp � u = 0

is given by x = p
p
t and y = p

p
u. The local ring at this point is

F [x; y]=hxp � t; yp � ui = F [x; y]=h(x� p
p
t)p; (y � p

p
u)pi ' F [x; y]=hxp; ypi;

which clearly has embedding dimension 2 and hence is not curvilinear. It follows that mf is
derogatory for all f 2 F [x; y]. Since the single-variable representation requires that mf be non-
derogatory, we can see why the Theorem of the Primitive Element fails in this case. 2

4.3 Primary Decomposition

The �nal task of Section 4 is to extend the factorizations introduced in Section 4.1 to the realm of
ideals. Suppose that

f1(x1; : : : ; xn) = � � � = fs(x1; : : : ; xn) = 0 (4.3.1)

is a system of equations with coeÆcients in a �eld F and only �nitely many solutions over the
algebraic closure F . (Thus we are back in the situation where the number of equations need not
equal the number of variables.) We say that hf1; : : : ; fsi is zero-dimensional since a �nite set of
points has dimension 0. Our goal is to give an algorithm for computing the primary decomposition
of a zero-dimensional ideal.

Theoretical Results. An ideal I � F [x1; : : : ; xn] is primary if fg 2 I always implies that
either f 2 I or gN 2 I for some N � 1. It is easy to see that the radical

p
I of a primary ideal is

prime. by Chapter 4, x7 of [CLO1], every ideal I � F [x1; : : : ; xn] has a primary decomposition

I = I1 \ � � � \ Ir (4.3.2)

into an intersection of primary ideals. We say that (4.3.2) is minimal when r is as small as possible.
In the zero-dimensional case, the primary components Ii of hf1; : : : ; fsi can be obtained from

the given ideal by adding one more carefully chosen polynomial ui. Here is the precise result.

Lemma 4.3.1 A zero-dimensional ideal hf1; : : : ; fsi has a minimal primary decomposition

hf1; : : : ; fsi = I1 \ � � � \ Ir
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such that
p
I1; : : : ;

p
Ir are distinct maximal ideals. Furthermore, for each i,

Ii 6�
[
j 6=i

p
Ij ;

and any ui 2 Ii n
S
j 6=i

p
Ij has the property that

Ii = hf1; : : : ; fs; uii:
Proof. Let hf1; : : : ; fsi = I1 \ � � � \ Ir be a minimal primary decomposition. Note that Ii and
hence

p
Ii are zero-dimensional since hf1; : : : ; fsi is. But we also know that

p
Ii is prime. An easy

argument shows that the only zero-dimensional prime ideals are maximal. Also, if
p
Ii =

p
Ij for

some i 6= j, then one can easily show that Ii \ Ij is primary, which contradicts the minimality of
our representation. Hence the

p
Ii are distinct.

If Ii �
S
j 6=i

p
Ij , then Ii �

p
Ij for some j 6= i by the Prime Avoidance Theorem (Theorem

3.61 of [Sharp]). This implies
p
Ii �

p
Ij and hence

p
Ii =

p
Ij since the radicals are maximal.

This contradiction proves that Ii 6�
S
j 6=i

p
Ij .

Now let ui 2 Ii n
S
j 6=i

p
Ij . Then we certainly have hf1; : : : ; fs; uii � Ii. For the opposite

inclusion, take j 6= i and note that ui =2
p
Ij implies that 1 + uirj 2

p
Ij for some rj since

p
Ij is

maximal. Thus (1 + uirj)
Nj 2 Ij for some Nj � 1. Expanding the productY

j 6=i

(1 + uirj)
Nj 2

Y
j 6=i

Ij �
\
j 6=i

Ij ;

we see that 1 + uir 2
T
j 6=i Ij for some r. Now take a 2 Ii. Then

a(1 + uir) 2 Ii \
\
j 6=i

Ij = hf1; : : : ; fsi:

Hence a = a(1 + uir) + ui(�ar) 2 hf1; : : : ; fsi+ huii = hf1; : : : ; fs; uii, as desired. 2

In the zero-dimensional case, one can also prove that the ideals Ii in the primary decomposition
are unique. For general ideals, uniqueness need not hold (see Exercise 6 of Chapter 4, x7 of [CLO1]
for an example) due to the phenomenon of embedded components.

The most commonly used algorithm for computing the primary decomposition of a zero-
dimensional ideal is described in [GTZ] and uses Gr�obner bases plus a change of coordinates
to �nd the ui of Lemma 4.3.1. However, the recent paper [Monico] shows how to �nd the ui using
the quotient algebra

A = F [x1; : : : ; xn]=hf1; : : : ; fsi:
We will describe Monico's method, beginning the following special case.

The Rational Case. The solutions of (4.3.1) are rational over F if all solutions in F
n
actually

lie in Fn. In this situation, it is easy to see that the primary decomposition is

hf1; : : : ; fsi =
\
p

Ip;

where the intersection is over all solutions p of (4.3.1). Furthermore, as we noted in (1.3.3), the
primary component Ip is

Ip = ff 2 F [x1; : : : ; xn] j gf 2 hf1; : : : ; fsi for some g 2 F [x1; : : : ; xn] with g(p) 6= 0g;
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and
p
Ip is the maximal ideal hx1 � p1; : : : ; xn � pni when p = (p1; : : : ; pn). Unfortunately, this

elegant description of Ip is not useful for computational purposes. But we can use the methods of
Section 1 to �nd the polynomials ui of Lemma 4.3.1 as follows.

Proposition 4.3.2 Suppose that hf1; : : : ; fsi is zero-dimensional and all solutions of (4.3.1) are
rational over F . If f 2 F [x1; : : : ; xn] takes distinct values at the solutions of (4.3.1), then for each

solution p, the corresponding primary component is

Ip =


f1; : : : ; fs; (f � f(p))mult(p)

�
:

Proof. Let up = (f � f(p))mult(p). By Lemma 4.3.1, it suÆces to show that up 2 Ip and up =2pIq

for all solutions q 6= p. Since
p
Iq is the maximal ideal of q, the latter condition is equivalent to

the non-vanishing of up at q, which follows since f takes distinct values at the solutions.
To prove that up 2 Ip, let vp =

Q
q 6=p(f � f(q))mult(q). By Proposition 1.5.1,

upvp = CharPolymf
(f) (4.3.3)

since f takes distinct values at the solutions. However, the Cayley-Hamilton Theorem tells us that
CharPolymf

(mf ) is the zero operator on A. Applied to [1] 2 A, we obtain

[0] = CharPolymf
(mf )[1] = CharPolymf

([f ]) = [CharPolymf
(f)]:

Combined with (4.3.3), this implies

upvp = CharPolymf
(f) 2 hf1; : : : ; fsi � Ip:

Since Ip is primary, either up or some power of vp lies in Ip. But

vp(p) =
Y
q 6=p

(f(p)� f(q))mult(q) 6= 0

since f takes distinct values at the solutions. Hence no power of vp lies in Ip, so that up 2 Ip. 2

Here is an example of this proposition.

Example 4.3.3 Consider the ideal hx2 + 2y2 � 2y; xy2 � xy; y3 � 2y2 + yi � F [x; y]. We saw in
Example 1.1.1 that the corresponding equations have solutions (0; 0) and (0; 1), which are rational
over F . Since y takes distinct values at the solutions, we can use f = y in Proposition 4.3.2 to
compute the primary decomposition.

By Example 1.2.2, the characteristic polynomial of my is u
2(u�1)3. It follows that the primary

components are

I(0;0) = hx2 + 2y2 � 2y; xy2 � xy; y3 � 2y2 + y; y2i = hx2; yi
I(0;1) = hx2 + 2y2 � 2y; xy2 � xy; y3 � 2y2 + y; (y � 1)3i = hx2 + 2(y � 1); x(y � 1); (y � 1)2i;

where we leave the �nal equality of each line as an exercise for the reader (for I(0;1), the congruences

y(y � 1)2 � (y � 1)2 mod (y � 1)3 and y(y � 1) � y � 1 mod (y � 1)2

will be useful). Putting these together, we obtain the primary decomposition

hx2 +2y2� 2y; xy2� xy; y3 � 2y2+ yi = hx2; yi \ hx2 +2(y� 1); x(y� 1); (y� 1)2i = I(0;0) \ I(0;1)
given in Example 2.3.3. 2

We note that in Proposition 4.3.2, one can replace the characteristic polynomial with the
minimal polynomial. Here is the precise result.
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Proposition 4.3.4 Suppose that hf1; : : : ; fsi is zero-dimensional and all solutions of (4.3.1) are
rational over F . If f 2 F [x1; : : : ; xn] takes distinct values at the solutions of (4.3.1), then for each

solution p, the corresponding primary component is

Ip =


f1; : : : ; fs; (f � f(p))n(p)

�
;

where MinPolymf
(u) =

Q
p(u� f(p))n(p).

We leave the proof as an exercise. Here is an example.

Example 4.3.5 For the ideal of Example 4.3.3, recall from Example 1.2.2 that the minimal
polynomial of y is u(u� 1)2. Thus

I(0;0) = hx2 + 2y2 � 2y; xy2 � xy; y3 � 2y2 + y; yi = hx2; yi
I(0;1) = hx2 + 2y2 � 2y; xy2 � xy; y3 � 2y2 + y; (y � 1)2i = hx2 + 2(y � 1); x(y � 1); (y � 1)2i:

This gives the same primary decomposition as Example 4.3.3, though the initial description of the
primary components is simpler because the minimal polynomial has smaller exponents than the
characteristic polynomial. 2

The General Case. Now suppose that F is a �eld and that the equations (4.3.1) have solutions
whose coordinates may lie in a strictly larger �eld. This means that in the primary decomposition
over F , the number of primary components no longer equals the number of solutions. Here is an
example taken from [Monico].

Example 4.3.6 The equations x2�2 = y2�2 = 0 have four solutions (�p2;�p2), none of which
is rational over Q. We will see below that the primary decomposition of hx2 � 2; y2 � 2i � Q[x; y]
is

hx2 � 2; y2 � 2i = I1 \ I2 = hx2 � 2; x� yi \ hx2 � 2; x+ yi:
Note that I1 corresponds to �(

p
2;
p
2) while corresponds to �(p2;�p2). 2

Here is a description of the primary decomposition of an arbitrary zero-dimensional ideal.

Proposition 4.3.7 Suppose that hf1; : : : ; fsi is zero-dimensional and f 2 F [x1; : : : ; xn] takes dis-
tinct values at the solutions of (4.3.1). If the irreducible factorization of CharPolymf

(u) is

CharPolymf
(u) =

rY
i=1

pi(u)
mi ;

where p1(u); : : : ; pr(u) are distinct monic irreducible polynomials, then the primary decomposition

of hf1; : : : ; fsi is given by

hf1; : : : ; fsi = I1 \ � � � \ Ir;
where

Ii =


f1; : : : ; fs; pi(f)

mi
�
:

Proof. We will use Galois theory to prove the proposition in the special case when F is perfect
(see [Monico] for the general case). This means that either F has characteristic zero, or F has
characteristic p > 0 and every element of F is a pth power. Every �nite extension of a perfect �eld
is separable.

If Ii is a primary component of h1; : : : ; fsi, then its radical
p
Ii is prime in F [x1; : : : ; xn]. Then

the following are true:
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� The variety V(Ii) = V(
p
Ii) � F

n
is irreducible over F .

� The Galois group Gal(F=F ) acts on V(Ii).

These bullets imply that the action of Gal(F=F ) acts on V(Ii) is transitive. Hence all p 2 V(Ii)
have the same multiplicity, denoted mi. It is also easy to show that V(Ii) \V(Ij) = ; for i 6= j.

By Proposition 1.5.1, we see that

CharPolymf
(u) =

rY
i=1

Y
p2V(Ii)

(u� f(p))mi :

Since f has coeÆcients in F , we see that �(f(p)) = f(q) whenever � 2 Gal(F=F ) takes p to q.
But we also know that the f(p) are all distinct and F is perfect. Thus standard arguments from
Galois theory imply that pi(u) =

Q
p2V(Ii)

u� f(p) is irreducible over F . It follows that the above
factorization concides with the one in the statement of the proposition.

From here, the rest of the proof is similar to what we did in the proof of Proposition 4.3.2.
The key point as always is that f takes distinct values at the solutions. We leave the details as an
exercise for the reader. 2

The above proof shows that when F is perfect, the mi's compute the multiplicities of the
corresponding points. However, this can fail when F is not perfect. We should also mention that
one can weaken the hypothesis that f takes distinct values at the solutions: an analysis of the
proof in [Monico] reveals that it is suÆcient to assume that f(p) 6= f(q) whenever p and q are
solutions of (4.3.1) lying in di�erent orbits of the Gal(F=F )-action. When this happens, however,
the exponent mi may fail to equal the multiplicity.

Here is an example of Proposition 4.3.7.

Example 4.3.8 For the ideal hx2 � 2; y2 � 2i � Q[x; y] of Example 4.3.6, one easily sees that
f = x+ 2y takes distinct values at the solutions and has characteristic polynomial

CharPolymf
(u) = (u2 � 18)(u2 � 2);

where u2 � 18 and u2 � 2 are irreducible over Q. By Proposition 4.3.7, we get the primary
decomposition hx2 � 2; y2 � 2i = I1 \ I2, where

I1 = hx2 � 2; y2 � 2; (x+ 2y)2 � 18i = hx2 � 2; x� yi
I2 = hx2 � 2; y2 � 2; (x+ 2y)2 � 2i = hx2 � 2; x+ yi:

This is the primary decomposition given in Example 4.3.6.
We could instead have used f = x + y, which has charactersitic polynomial u2(u2 � 8). The

function f does not take distinct values on the roots but does separate orbits of the Galois action.
As noted above, the conclusion of Proposition 4.3.7 still holds for such an f . The reader should
check that u2(u2 � 8) leads to the above primary decomposition. 2

We next relate primary decomposition to the factorizations discussed in Section 4.1.

Example 4.3.9 As in Section 4.1, suppose that f(x); g(x) 2 Q[x] are irreducible and �; � 2 C

satisfy f(�) = g(�) = 0. Also suppose that we have the irreducible factorization

f(x) = f1(x; �) � � � fr(x; �) over Q(�):
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We can relate this to primary decomposition as follows. Pick t 2 Q such that f = x + ty takes
distinct values at the solutions of f(x) = g(y) = 0. In the proof of Theorem 4.1.2, we showed that
all solutions have multiplicity 1. Hence the proof of Proposition 4.3.7 shows that

CharPolymf
(u) =

rY
i=1

�i(u);

where �i(u) 2 Q[u] is irreducible. Then the primary decomposition of hf(x); g(y)i � Q[x; y] is

hf(x); g(y)i =
r\
i=1

hf(x); g(y);�i(x+ ty)i:

However, Theorem 4.1.2 asserts that

fi(x; �) = GCD(�i(x+ t�); f(x)):

Since Q(�) ' Q[y]=hg(y)i, it is an easy exercise to show that

hf(x); g(y);�i(x+ ty)i = hg(y); fi(x; y)i:
Hence the above primary decomposition can be written

hf(x); g(y)i =
r\

i=1

hg(y); fi(x; y)i:

This shows the close relation between primary decomposition and factorization. 2

There is also a version of Proposition 4.3.7 which uses minimal polynomials instead of charac-
teristic polynomials.

Proposition 4.3.10 Suppose that hf1; : : : ; fsi is zero-dimensional and f 2 F [x1; : : : ; xn] takes
distinct values at the solutions of (4.3.1). If the irreducible factorization of MinPolymf

(u) is

MinPolymf
(u) =

rY
i=1

pi(u)
ni ;

where p1(u); : : : ; pr(u) are distinct monic irreducible polynomials, then the primary decomposition

of hf1; : : : ; fsi is given by

hf1; : : : ; fsi = I1 \ � � � \ Ir;
where

Ii =


f1; : : : ; fs; pi(f)

ni
�
:

Proof. See [ABRW] or [YNT]. 2

Algorithmic Aspects. From the point of view of algorithmic primary decomposition, one
weakness of Proposition 4.3.7 is that f needs to take distinct values at the solutions. How do
we do this without knowing the solutions? One way would be to make a random choice of f =
a1x1+ � � �+ anxn. But this gives only a probabilistic algorithm. Another weakness of this method
is that computing the characteristic polynomial of a large matrix can be time-consuming. The
timings reported in [Monico] indicate that as the number of solutions increases, methods based on
[GTZ] outperform the algorithm using Proposition 4.3.7.

Other approaches to primary decomposition are given in [EHV] and [MMM2].
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5 Galois Theory

5.1 Splitting Algebras

Solving equations has been one of our main topics of discussion. Since Galois theory is also
concerned with the solutions of equations, it makes sense that there should be some link. As we
will see, turning a polynomial equation f(x) = 0 of degree n into n equations in n unknowns is a
very useful thing to do.

Let F be an in�nite �eld. We will assume that f(x) 2 F [x] is a monic polynomial of degree n
with distinct roots. We will write f(x) as

f(x) = xn � c1x
n�1 + � � �+ (�1)ncn; ci 2 F:

The elementary symmetric polynomials �1; : : : ; �n 2 F [x1; : : : ; xn] are de�ned by the identity

(x� x1) � � � (x� xn) = xn � �1x
n�1 + � � �+ (�1)n�n: (5.1.1)

Consider the system of n equations in x1; : : : ; xn given by

�1(x1; : : : ; xn)� c1 = �2(x1; : : : ; xn)� c2 = � � � = �n(x1; : : : ; xn)� cn = 0: (5.1.2)

The associated algebra is

A = F [x1; : : : ; xn]=h�1 � c1; : : : ; �n � cni:

This is called the splitting algebra of f over F . The system (5.1.2) and the algebra A were �rst
written down by Kronecker in 1882 and 1887 respectively (see page 282 of [Kronecker, Vol. II] for
the equations and page 213 of [Kronecker, Vol. III] for the algebra). A very nice modern treatment
of the splitting algebra appears in the recent preprint [EL].

The Universal Property. We �rst explain why the splitting algebra deserves its name. The
natural map F [x1; : : : ; xn]! A takes �i to ci, so that by (5.1.1), the cosets [xi] 2 A become roots
of f(x). It follows that f(x) splits completely in A[x]. But more is true, for the factorization of
f(x) in A[x] controls all possible ways in which f(x) splits. Here is the precise statement.

Proposition 5.1.1 Suppose that R is an F -algebra such that f(x) splits completely in R[x] via

f(x) = (x� �1) � � � (x� �n); �1; : : : ; �n 2 R:

Then there is an F -algebra homomorphism ' : A ! R such that this splitting is the image under

' of the splitting of f(x) in A[x].

Proof. Consider the F -algebra homomorphism � : F [x1; : : : ; xn]! R determined by xi 7! �i. This
maps (5.1.1) to the splitting in the statement of the proposition, so that � maps �i to ci. Hence
�(�i � ci) = 0 for all i, which implies that � induces an F -algebra homomorphism ' : A! R. It
follows easily that ' has the desired property. 2

The splitting of f(x) in A[x] is thus the \universal splitting" in the sense that any other splitting
is a homomorphic image of this one.
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The Structure of A. Our next task is to understand the structure of the algebra A and
explain how it relates to the splitting �eld of f over F . Let F an the algebraic closure of F and
�x a splitting

f(x) = (x � �1) � � � (x� �n) 2 F [x]:

Using this, we can describe the solutions of (5.1.2) as follows. If (�1; : : : ; �n) 2 F
n
is a solution,

then the substitutions xi 7! �i take (5.1.1) to

f(x) = (x � �1) � � � (x� �n) 2 F [x]:

Thus the �i's are some permutation of the �i. Since f(x) has distinct roots by hypothesis, there
is a unique � 2 Sn such that �i = ��(i) for all i. It follows easily that (5.1.2) has precisely n!
solutions given by

(��(1); : : : ; ��(n)); � 2 Sn:

We can determine the multiplicities of these solutions as follows. Since �i � ci has degree i as
a polynomial in x1; : : : ; xn, B�ezout's theorem tells us that (5.1.2) has at most 1 � 2 � 3 � � �n = n!
solutions, counting multiplicity. Since we have n! solutions, the multiplicities must all be 1.

Since F is in�nite, we can �nd t1; : : : ; tn 2 F such that f0 = t1x1 + � � � + tnxn takes distinct
values at the solutions of (5.1.2). Thus, as � varies over the elements of Sn,

f0(��(1); : : : ; ��(n)) = t1��(1) + � � �+ tn��(n) (5.1.3)

gives n! distinct elements of F . Since all solutions of (5.1.2) have multiplicity 1, we conclude that:

� The characteristic polynomial of mf0 on A is

CharPolymf0
(u) =

Y
�2Sn

�
u� (t1��(1) + � � �+ tn��(n))

�
:

Our choice of t1; : : : ; tn implies that this polynomial has distinct roots.

� The linear map mf0 is non-derogatory, so that by Proposition 1.4.1, the map sending u to
[t1x1 + � � � tnxn] 2 A induces an F -algebra isomorphism

F [u]=hCharPolymf0
(u)i ' A:

� A has dimension n! over F .

Now factor CharPolymf0
(u) into a product of monic irreducible polynomials in F [u], say

CharPolymf0
(u) =

rY
i=1

Gi(u):

Since CharPolymf0
(u) has distinct roots, the Gi(u) are distinct. When combined with the third

bullet, we get F -algebra isomorphisms

A ' F [u]=hCharPolymf0
(u)i '

rY
i=1

F [u]=hGi(u)i =
rY

i=1

Ki: (5.1.4)

Each Ki is a �eld, and since the projection map A! Ki is surjective, we see that Ki is a splitting
�eld of f over F . Thus the factorization of the characteristic polynomial of mf0 shows that A is
isomorphic to a product of �elds, each of which is a copy of the splitting �eld of f over F .
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5.2 The Galois Group

We now use the above description of A to compute the Galois group of f and prove some of its
basic properties. We will also describe an algorithm for computing the Galois group.

The Galois Group and the Symmetric Group. An important observation is that the
action of Sn on F [x1; : : : ; xn] given by permuting variables descends to an action of Sn on A. Since
the decomposition A ' Qr

i=1Ki is unique up to isomorphism, it follows that for 1 � i � r and
� 2 Sn, we have �(Ki) = Kj for some j. Then we get the following result.

Theorem 5.2.1 There is a natural isomorphism

Gal(Ki=F ) ' f� 2 Sn j �(Ki) = Kig:

Furthermore,

jGal(Ki=F )j = [Ki :F ]

and, when the characteristic of F doesn't divide the order of the Galois group,

F = f� 2 Ki j (�) = � for all  2 Gal(Ki=F )g:

Proof. Let Gi = f� 2 Sn j �(Ki) = Kig. Since every � induces an automorphism of Ki, we get
an injective group homomorphism Gi ! Gal(Ki=F ). To show that this map is surjective, take
 2 Gal(Ki=F ). Under the projection A ! Ki, the cosets [xi] map to roots of f(x) lying in Ki.
Then  must permute these according to some � 2 Sn. Since the roots generate Ki over F and �

permutes the roots, we have �(Ki) = Ki. It follows that � 2 Gi maps to . This gives the desired
isomorphism.

For the second assertion, we �rst show that Sn permutes the Ki transitively. Under the iso-
morphism

F [u]=hCharPolymf0
(u)i ' A; (5.2.1)

Sn permutes the factors of CharPolymf0
(u) =

Qr
i=1Gi(u). Over F , the factorization

CharPolymf0
(u) =

Y
�2Sn

�
u� (t1��(1) + � � �+ tn��(n))

�
(5.2.2)

shows that Sn must permute the Gi(u) transitively. By (5.1.4), we conclude that Sn permutes the
Ki transitively. Since Gi is the isotropy subgroup of Ki under this action, we see that

jGal(Ki=F )j = jGij = n!

r
:

However, the transitivity also shows that the K1; : : : ;Kr are mutually isomorphic. Thus

n! = dimF (A) = [K1 :F ] + � � �+ [Kr :F ] = r [Ki :F ]:

Combining this with the previous equation gives the desired equality jGal(Ki=F )j = [Ki :F ].
Finally, suppose that � 2 Ki is in the �xed �eld of Gal(Ki=F ). We may assume that � 6= 0.

Let p 2 F [x1; : : : ; xn] map to �i 2 Ki and to 0 2 Kj for j 6= i. Then P =
P

�2Sn
� �p is symmetric

and hence is a polynomial in the �i. In A, this means that [P ] 2 F , which means that P projects
to an element of F in each of K1; : : : ;Kr.
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Observe that �(�) 2 Ki implies �(�) 2 Ki \ �(Ki). Thus the intersection is nonzero, which
by (5.1.4) implies that � 2 Gi. But then �(�) = � since � is in the �xed �eld. It follows that the
projection of P onto Ki is jGij�. Thus jGij� 2 F , and then � 2 F follows by hypothesis. 2

While the above theorem is not as general as possible, it shows that basic properties of the
Galois group follow from the splitting algebra. See [EL] for a more general version of Theorem 5.2.1.

Computing the Galois Group. Our �nal topic is to explain an algorithm for computing
Gi ' Gal(Ki=F ). We will use the characteristic polynomial CharPolymf0

(u), where as usual
f0 = t1x1 + � � � + tnxn is chosen so that the n! numbers are distinct. Of course, since we don't
know the roots of f , in practice we simply make a random choice of t1; : : : ; tn 2 F .

One way to compute CharPolymf0
(u) would be to use the product formula (5.2.2) together

with the classical theory of symmetric polynomials. But we can also use Gr�obner bases as follows.
Given variables u1; : : : ; us, set h0(u1; : : : ; us) = 1 and, for k > 0, let hk(u1; : : : ; us) be the sum of
all monomials of degree k in these variables. Thus

hk(u1; : : : ; us) =
X

deg(u�)=k

u�

when k > 0. The proof of Proposition 5 of Chapter 7, Section 1 of [CLO1] implies the following.

Proposition 5.2.2 For the lexicographic order de�ned in Section 1.1, the polynomials

gk = hk(xk ; : : : ; xn) +

kX
i=1

(�1)ici hk�i(xk ; : : : ; xn); k = 1; : : : ; n

form a Gr�obner basis for the ideal h�1 � c1; : : : ; �n � cni � F [x1; : : : ; xn].

For this Gr�obner basis, we leave it as an exercise for the reader to show that the leading term
of gk is xkk and the set of remainder monomials is

B = fxa11 � � �xann j 0 � ak � k � 1 for k = 1; : : : ; ng: (5.2.3)

It is easy to see that jBj = n!, which gives another proof that dimF (A) = n!.
Using this Gr�obner basis, one can compute the matrix of mf0 with respect to B and jemce its

characteristic polynomial CharPolymf0
(u). Then computing the discriminant of CharPolymf0

(u)
reveals whether or not we made a good choice of t1; : : : ; tn. If not, try again. Furthermore, by
Exercise 6 of Chapter 1, Section 1 of [CLO1], one can describe a procedure whereby a good choice
of t1; : : : ; tn can be found after �nitely many attempts.

Once we have CharPolymf0
(u) with distinct roots, the next step is to factor it over F . Let

G(u) be an irreducible factor. Then

K = F [u]=hG(u)i

is a splitting �eld of f over F and the degree of G(u) is the order of the Galois group.

Example 5.2.3 Consider f(x) = x3 + x2 � 2x � 1 2 Q[x]. Let's use the above procedure to
construct the splitting �eld of f(x). We will write the equations (5.1.2) as

x1 + x2 + x3 + 1 = x1x2 + x1x3 + x2x3 + 2 = x1x2x3 + 1 = 0:
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For lexicograhic order with x1 > x2 > x3, Proposition 5.2.2 implies that the associated Gr�obner
basis consists of the polynomials

x1 + x2 + x3 + 1; x22 + x2x3 + x23 + x2 + x3 � 2; x33 + x23 � 2x3 � 1; (5.2.4)

with remainder monomials 1; x2; x3; x2x3; x
2
3; x2x

2
3. The \random" choice t1 = 0; t2 = 1; t3 = 2

gives f0 = x2 + 2x3. Using the above Gr�obner basis, one computes that the matrix of mf0 is

Mf0 =

0
BBBBBB@

0 2 0 �1 2 0
1 �1 0 0 0 1
2 �1 0 0 4 �1
0 1 1 �1 0 2
0 �1 2 0 �2 0
0 0 0 1 1 �2

1
CCCCCCA
:

Then the corresponding characteristic polynomial and its irreducible factors over Q are

CharPolymf0
(u) = u6 + 6u5 + u4 � 36u3 � 20u2 + 48u� 13

= (u3 + 3u2 � 4u� 13)(u3 + 3u2 � 4u+ 1):

This polynomial has discrimanant 18078415936 6= 0, so that it has distinct roots (this also follows
from the above factorization|do you see why?). By (5.1.4), it follows that

K1 = Q[u]=hu3 + 3u2 � 4u� 13i and K2 = Q[u]=hu3 + 3u2 � 4u+ 1i (5.2.5)

are splitting �elds of f(x) over Q. Hence Gal(K1=Q) ' Gal(K1=Q) has order 3. 2

In order for splitting �elds such as those constructed in Example 5.2.3 to be useful, we need to
�nd an explicit representation of the roots. This is done as follows. Let

� = [t1x1 + � � �+ tnxn] 2 A: (5.2.6)

The isomorphism (5.2.1) shows that 1; �; : : : ; �n!�1 is a basis of A over F . But we also have the
basis given by B of (5.2.3). The division algorithm using the Gr�obner basis of Proposition 5.2.2
enables us to express each �i in terms of B. Thus we can compute the transition matrix from one
basis to the other, and using the inverse of this matrix, we can express the cosets coming from
B as linear combinations of powers of �. Since x2; : : : ; xn 2 B and [x1] = [c1 � x2 � � � � � xn], it
follows that we can compute polynomials Pj(u) 2 Q[u] such that

[xj ] = Pj(�); j = 1; : : : ; n: (5.2.7)

Using the isomorphism (5.2.1) followed by the projection onto K = F [u]=hG(u)i, it follows that

[Pj(u)] 2 K = F [u]=hG(u)i; j = 1; : : : ; n

represent the roots of f(x) in the splitting �eld. Hence we have complete computational control of
the roots. Here is an example.

Example 5.2.4 Consider f(x) = x3+x2�2x�1 2 Q[x] from Example 5.2.3. Since t1 = 0; t2 = 1,
t3 = 2, we have � = [x2 + 2x3] 2 A. Using the Gr�obner basis (5.2.4), one easily computes the
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matrix 0
BBBBBB@

1 0 2 1 �3 �61
0 1 �1 3 4 �31
0 2 �1 17 �35 194
0 0 3 �5 37 �116
0 0 3 �7 45 �164
0 0 0 6 �24 130

1
CCCCCCA

whose columns express the remainders of 1; �; �2; �3; �4; �5 on division by the Gr�obner basis as
linear combinations of the remainder monomials 1; x2; x3; x2x3; x

2
3; x2x

2
3. Using the inverse of this

matrix, one computes that

[x1] =
1
14
(�45 + 51�+ 17�2 � 12�3 � 3�4)

[x2] =
1
14
(62� 116�� 34�2 + 24�3 + 6�4)

[x3] =
1
14
(�31 + 65�+ 17�2 � 12�3 � 3�4)

in the algebra A. Mapping this to the �eld K1 = Q[u]=hu3 +3u2�4u�13i of (5.2.5) and reducing
modulo u3 + 3u2 � 4u� 13, we see that f(x) = x3 + x2 � 2x� 1 has roots

a1 = [�6 + u2]

a2 = [10� u� 2u2]

a3 = [�5 + u+ u2]

(5.2.8)

in K1 = Q[u]=hu3 + 3u2 � 4u� 13i. Similarly, one computes that the roots are
b1 = [�3 + 3u+ u2]

b2 = [4� 7u� 2u2]

b3 = [�2 + 4u+ u2]

(5.2.9)

in K2 = Q[u]=hu3 + 3u2 � 4u+ 1i. 2

Our �nal task is to compute the Galois group. Consider the set of permutations de�ned by

G =
�
� 2 Sn j G(u) divides G

�
t1P�(1)(u) + � � �+ tnP�(n)(u)

�
in Q[u]

	
: (5.2.10)

where P1; : : : ; Pn are as in (5.2.7). There is an obvious (though not very eÆcient) algorithm for
computing G. Then G determines Gal(K=F ) as follows.

Proposition 5.2.5 The set G de�ned in (5.2.10) is a subgroup of Sn and

G ' Gal(K=F ):

Proof. The �eld K = F [u]=hG(u)i appears in the decomposition (5.1.4). Under the projection
map

A ' F [u]=hCharPolymf0
(u)i �! K = F [u]=hG(u)i; (5.2.11)

suppose that [xi] maps to ai 2 K. Then � = [t1x1+ � � �+tnxn] 2 A maps to a = t1�1+ � � �+tn�n 2
F . This is a primitive element of K over F and G(u) is its minimal polynomial over F . It follows
easily that

� 2 Sn comes from Gal(K=F ) () G(t1��(1) + � � �+ tn��(n)) = 0 in K:
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But now recall from (5.2.7) that [xi] = Pi(�) in A. Applying (5.2.11), we see that ai = Pi(a) in
K. If we substitute this into the above equivalence, then we obtain

� 2 Sn comes from Gal(K=F ) () G
�
t1P�(1)(a) + � � �+ tnP�(n)(a)

�
= 0 in K:

Since a 2 K is really [u] 2 F [u]=hG(u)i, we see that
G
�
t1P�(1)(a) + � � �+ tnP�(n)(a)

�
= 0 () G(u) divides G

�
t1P�(1)(u) + � � �+ tnP�(n)(u)

�
:

The proposition now follows immediately. 2

Here is an example of how Proposition (5.2.5) can be used to compute a Galois group.

Example 5.2.6 Continuing Example 5.2.4, we have the splitting �eld K1 = Q[u]=hG(u)i, G(u) =
u3 + 3u2 � 4u� 13, with roots given by (5.2.8). This means that

P1(u) = �6 + u2; P2(u) = 10� u� 2u2; P3(u) = �5 + u+ u2:

Also recall that t1 = 0; t2 = 1; t3 = 2, so that

G
�
t1P�(1)(u) + t2P�(2)(u) + t3P�(3)(u)

�
= G

�
P�(2)(u) + 2P�(3)(u)

�
:

Then one easily computes the following table:

� 2 S3 G
�
P�(2)(u) + 2P�(3)(u)

�
mod G(u)

e 0
(123) 0
(132) 0
(12) �14
(23) �14
(13) �14

It follows that Gal(K=F ) ' fe; (123); (132)g = A3 � S3. 2

Of course, we already knew that the group Gal(K=F ) of this example was cyclic of order 3
since jGal(K=F )j = 3 by Example 5.2.3. However, it is still nice to see how the calculation works
in this case.

In practice, this algorithm described above is hopelessly ineÆcient except for polynomials of
very small degree, and for even these, much better methods are available (see, for example, Section
6.3 of [Cohen]).

History. The methods described here date back to Galois and Kronecker. For example, in
1830 Galois chose t1; : : : ; tn such that the n! values (5.1.3) are distinct and showed that

V = t1�1 + � � �+ tn�n

is a primitive element of the splitting �eld. The minimal polynomial G(u) of V over F is the same
polynomial that we used in Proposition 5.2.5, and Galois uses both G(u) and the representation
of the roots given by

�i = Pi(V )

(which is what (5.2.7) looks like in this situation). In all of this, Galois simply assumed the
existence of the roots.
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In 1887, Kronecker gave the �rst rigorous construction of the splitting �eld. His method was
to prove the existence of t1; : : : ; tn as above and then factor CharPolymf0

(u) into irreducibles. As

we have seen, Kronecker knew how to do this constructively. Then, if G(u) is one of the factors,
then the splitting �eld is exactly the �eld K = F [u]=hG(u)i used above.

When I �rst read Kronecker, I remember thinking \what about the other irreducible factors of
the characteristic polynomial?" The Galois theory given here answers this question nicely, for we
see that the other factors give other models of the splitting �eld which when taken together give
the splitting algebra

A ' K1 � � � � �Kr:

In Section 5.3, we will use primary decomposition to help understand why multiple copies of the
splitting �eld are necessary.

Resultants. We next observe that the characteristic polynomial CharPolymf0
(u) can be in-

terpreted as a resultant. Namely, we claim that

Res1;1;2;:::;n(u� f0; �1 � c1; : : : ; �n � cn) = �CharPolymf0
(u): (5.2.12)

To prove this, recall from Theorem 3.2.2 of Section 3 that this resultant equals the characteristic
polynomial multiplied by

Res1;2;:::;n
�
(�1 � c1)1; : : : ; (�n � cn)n

�
;

where (�i � ci)i consists of the terms of �i � ci of degree i. This is obviously just �i, so that this
multiplier reduces to

Res1;2;:::;n(�1; : : : ; �n):

This resultant equals �1 by Exercise 11 of Section 3 of Chapter 3 of [CLO2]. Hence we obtain
(5.2.12) as claimed.

Action of the Symmetric Group. Finally, we will describe the action of Sn on the product
decomposition A = K1 � � � � � Kr. If we let �ij 2 Kj be the projection of [xi] 2 A onto the
jth factor, then �1j ; : : : ; �nj are the roots of f(x) in Kj . So we have r isomorphic copies of the
splitting �eld together with an ordered list of the roots in each �eld. Let

ej = (0; : : : ; 0; 1; 0; : : : ; 0) 2 K1 � � � � �Kr;

where the 1 is in the jth position. Then by abuse of notation we can write �ij ej 2 A. Now take
� 2 Sn and suppose that �(ej) = e` (this is a precise way of saying that �(Kj) = K`). Then one
can show without diÆculty that �([xi]) = [x�(i)] implies that

�(�ij ej) = ��(i)` e`:

In the special case when � comes from an element of Gal(Kj=F ), we have �(ej) = ej . Then the
above formula gives the action of the Galois group on the roots. But now we know what happens
when we apply permutations which don't come from the Galois group!
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5.3 Primary Decomposition

For our �nal topic, we will use primary decomposition to describe how algebraic relations among
the roots inuence the Galois group and the splitting �eld. We will work over Q for simplicity.

Given f = xn � c1x
n�1 + � � �+ (�1)ncn 2 Q[x] as in Section 5.1, the splitting algebra is

A = Q[x1 ; : : : ; xn]=h�1 � c1; : : : ; �n � cni;
where as usual �i is the ith elementary symmetric polynomial. We've seen that A is a product

A =

rY
i=1

Ki;

where each Ki is a splitting �eld of f over Q. But we also have the primary decomposition

h�1 � c1; : : : ; �n � cni =
r\
i=1

Ii;

where each Ii is a maximal ideal in Q[x1 ; : : : ; xn]. These decompositions are related via

Ki = Q[x1 ; : : : ; xn]=Ii; i = 1; : : : ; r:

Each Ii is larger than h�1�c1; : : : ; �n�cni. The idea is that the polynomials we add to get from Ii
to h�1�c1; : : : ; �n�cni reect the algebraic relations between the roots which hold in the splitting
�eld Ki. Having more relations among the roots means that Ii is larger and hence Ki and the
Galois group are smaller.

For instance, if the Galois group of f is all of Sn, then h�1 � c1; : : : ; �n � cni is a maximal
ideal and the splitting algebra is the splitting �eld. This means that all relations among the roots
are consequences of the fact that the coeÆcients of f are (up to sign) the elementary symmetric
polynomials of the roots.

Let's see what happens when the Galois group is smaller than Sn.

Example 5.3.1 Let f = x3�c1x
2+c2x�c3 2 Q[x] be an irreducible cubic. The splitting algebra

of f is A = Q[x1 ; x2; x3]=h�1 � c1; �2 � c2; �3 � c3i. It is well-known that

the Galois group of f is isomorphic to

(
S3 if �(f) =2 Q2

Z=3Z if �(f) 2 Q2 ;

where �(f) 2 Q is the discriminant of f . By the above analysis, it follows that A is the splitting
�eld of f when �(f) =2 Q2 .

Now suppose that �(f) = a2 for some a 2 Q. In this case, the splitting algebra is a product of
two copies of the splitting �eld, i.e., A = K1 �K2. Let

p
� = (x1 � x2)(x1 � x3)(x2 � x3) 2 Q[x1 ; x2; x3]:

In the splitting algebra A, we have [
p
�]2 = [�(f)], so that

[
p
�]2 = [a]2:

Since A is not an integral domain, this does not imply [
p
�] = �[a]. In fact, [

p
�] 2 A cannot

have a numerical value since [
p
�] is not invariant under S3. Yet once we map to a �eld, the value
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must be �a. But which sign do we choose? The answer is both, which explains why we need two
�elds in the splitting algebra.

We leave it as an exercise for the reader to show that we have the primary decomposition

h�1 � c1; �2 � c2; �3 � c3i = I1 \ I2;

where

I1 = h�1 � c1; �2 � c2; �3 � c3;
p
�� ai

I2 = h�1 � c1; �2 � c2; �3 � c3;
p
�+ ai:

It is also easy to see that this is compatible with the action of S3. For example, (12) 2 S3 maps I1 to
I2 since (12) �

p
� = �

p
�. It follows that (12) maps K1 to K2 in the decomposition A = K1�K2.

This is consistent with the description of the Sn action given at the end of Section 5.2. 2

Example 5.3.1 is analogous to what happens in quantum mechanics when an observation forces
a mixed state (such as a superposition of pure states with di�erent energy levels) to become a
pure state (with a �xed energy level). In Example 5.3.1, the idea is that [

p
�]2 = [D(f)]2 = [a]2

means that [
p
�] is somehow a \mixed state" which becomes a \pure state" (i.e., �a 2 Q) when

\observed" (i.e., when mapped to a �eld).
The quartic is slightly more complicated since there are �ve possibilities for the Galois group

of an irreducible quartic. Hence we will only discuss the following special case.

Example 5.3.2 Let f = x4�c1x
3+c2x

2�c3x+c4 2 Q[x] be an irreducible quartic with splitting
algebra A = Q[x1 ; x2; x3; x4]=h�1 � c1; �2 � c2; �3 � c3; �4 � c4i. One of the tools used in solving
the quartic is the Ferrari resolvent

x3 � c2x
2 + (c1c3 � 4c4)x� c23 � c21c4 + 4c2c4: (5.3.1)

Euler showed that if �1; �2; �2 are the roots of (5.3.1), then the roots of f are

1

4

�
c1 �

q
�1 + c21 � 4c2 �

q
�2 + c21 � 4c2 �

q
�3 + c21 � 4c2

�
;

provided the signs are chosen so that the product of the square roots is c31 � 4c1c2 + 8c3. Also, as
shown by Lagrange, the roots of the resolvent (5.3.1) are

�1�2 + �3�4; �1�3 + �2�4; �1�4 + �2�3: (5.3.2)

As is well-known, the Galois group G of f over Q is isomorphic to one of the following 5 groups:

S4; A4; D8; Z=4Z; Z=2Z�Z=2Z;

where D8 is the dihedral group of order 8. Three of these cases are easy to distinguish:

G '

8><
>:
S4 if �(f) =2 Q2 and (5.3.1) is irreducible over Q

A4 if �(f) 2 Q2 and (5.3.1) is irreducible over Q

Z=2Z�Z=2Z if �(f) 2 Q2 and (5.3.1) is reducible over Q.
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The remaining case is when �(f) =2 Q2 and (5.3.1) has a root in Q. Here, the Galois group is D8

or Z=4Z. We state without proof the following nice fact:

G ' D8 () �(f) =2 Q2 ; (5.3.1) has a root b 2 Q; and we have the primary decomposition

h�1 � c1; �2 � c2; �3 � c3; �4 � c4i = I1 \ I2 \ I3;
where

I1 = h�1 � c1; �2 � c2; �3 � c3; �4 � c4; x1x2 + x3x4 � bi
I2 = h�1 � c1; �2 � c2; �3 � c3; �4 � c4; x1x3 + x2x4 � bi
I3 = h�1 � c1; �2 � c2; �3 � c3; �4 � c4; x1x4 + x2x3 � bi:

The reason for three ideals is that b is one of the three combinations of roots given in (5.3.2). To
get a �eld out of the ideal h�1� c1; �2� c2; �3� c3; �4� c4i, we must commit to which combination
gives b. This gives I1; I2; I3 as above. 2

We also observe that primary decomposition gives another algorithm for computing the Galois
group. Namely, suppose that f = xn�c1xn�1+ � � �+(�1)ncn 2 Q[x] and that we have the primary
decomposition h�1 � c1; : : : ; �n � cni =

Tr

i=1 Ii in Q[x1 ; : : : ; xn]. One easily sees that Sn permutes
the Ii and that

Gal(Ki=Q) ' f� 2 Sn j �(Ii) = Iig:
Using a Gr�obner basis of Ii, we can easily determine whether �(Ii) equals Ii for any given � 2 Sn.
Hence, by going through the elements of Sn one-by-one, we get a (horribly ineÆcient) algorithm
for computing the Galois group.

Finally, we should note that many of the ideas in this section are well-known to researchers in
computational Galois theory. See, for example, [AV] and [PZ].
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