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LECTURE 1: Harmonic Representatives

LINEAR ALGEBRA

Basic objects of linear algebra:
Vector space V , linear transformation L:V →W , basis, change
of basis

Normal form: We can choose bases for V , W such that the
matrix of L is in block form

L =

(
Ir 0
0 0

)

The only invariant of L is the rank r
Ker(L) ⊆ V , Im(L) ⊆W
Structure of L: V

π−→V/Ker(L)
L0−→Im(L)

i−→W

π surjective, L0 an isomorphism, i injective

When L:V → V , the story is more complicated (Jordan normal
form)



LINEAR GEOMETRY

Basic objects: Vector space V , positive-definite inner product
<,>, linear transformation L:V → W , orthonormal basis, or-
thogonal transformation

Normal form: Using orthonormal bases for V , W , in block form

L =

(
Λ 0
0 0

)
singular value decomposition

with Λ diagonal, diagonal entries λ1, . . . , λr the singular val-
ues of L

Basic constructions:
(1) The adjoint of L: L∗:W → V defined by
< Lv,w >=< v,L∗w > for all v ∈ V , w ∈W
If we use orthonormal bases, the matrix of L∗ is the transpose
of the matrix of L

(2) If S ⊆ V a linear subspace,
S⊥ = {v ∈ V |< v, s >= 0 for all s ∈ S}, the orthogonal
complement of S

Note V = S ⊕ S⊥, the orthogonal direct sum decomposi-
tion

(3) πS :V → S orthogonal projection, iS :S → V the canon-
ical inclusion

Note: πS(v) is the point of S closest to v



RELATIONS BETWEEN THE
BASIC CONSTRUCTIONS

Ker(L∗) = Im(L)⊥

Im(L∗) = Ker(L)⊥

(L∗)∗ = L, (ML)∗ = L∗M∗

π∗S = iS , i∗S = πS

Structure of L:

V
π−→Ker(L)⊥

L0−→Im(L)
i−→W

Now π is the orthogonal projection on Ker(L)⊥

L∗ = iKer(L)⊥ ◦ (L0)∗ ◦ πIm(L)



AN IMPORTANT TRICK

Ker(L∗L) = Ker(L)

Im(LL∗) = Im(L)

Proof: Clearly Ker(L) ⊆ Ker(L∗L). Now if
L∗Lv = 0, then < L∗Lv, v >= 0

But 0 =< L∗Lv, v >=< Lv,Lv >, so Lv = 0 because <,> is
positive definite.
This gives the reverse containment. The result for Im follows
by taking orthogonal subspaces.

Now

V ∼= Ker(L)⊕Ker(L)⊥ = Ker(L∗L)⊕ Im(L∗L)

W ∼= Ker(LL∗)⊕ Im(LL∗)



GEOMETRIC INTERPRETATION

LL∗w is the point of Im(L) closest to w

If w ∈ Im(L), L∗w is the shortest solution of Lv = w

For any w ∈W , the shortest v ∈ V coming closest to solving
Lv = w is L∗w



EXAMPLE: RANKING SPORTS TEAMS

Set-up: G a directed graph with nodes Γ, edges E

V = Maps(Γ,R)
W = Maps(E,R)

Γ = {Teams}, E = {Games}
Edge ~pq denotes home team p, visiting team q

V = possible “skill levels” of teams
W = point spreads: visitors - home team

L:V →W maps f ∈ V to L(f) with
L(f)( ~pq) = f(q)− f(p)
Interpretation: Point spread = skill level of q - skil level of p

< f, g >=
∑
p∈Γ f(p)g(p) for f, g ∈ V

< f, g >=
∑
e∈E f(e)g(e) for f, g ∈W

If w ∈ W is the observed point spread for the games played,
then L∗w is one guess for the reconstructed skill levels of the
teams

Comment: This is in the literature. There are many alternative
methods–this one is pretty basic. The most principled way to
do this would be to have a probabilistic model.



PROBABILISTIC INTERPRETATION OF L∗

Set-up: wtrue = Lv
wobs = Lv +G,
G is Gaussian noise, independent and with the same standard
deviation on all variables

So P (wobs|wtrue) = const · e−‖wobs−wtrue‖2/2σ2

Then the maximum likelihood estimate for wtrue is
vest = L∗wobs

Comment: If instead we put a Bayesian prior probability on v
of
const · e−‖v‖2/2τ2

then the maximum a posteriori estimate for v is

vest = (L∗L + (σ2/τ2)I)−1L∗wobs (Tikhonov regulariza-
tion)



HOMOLOGICAL ALGEBRA

Basic object: A complex of vector spaces

(V •, L•) is V 0 L0

−→V 1 L1

−→· · · L
n−1

−→V n

with Li linear transformations and key condition
Li+1 ◦ Li = 0 for all i, i.e.

Im(Li) ⊆ Ker(Li+1)

Basic construction:

Hk(V •) = Ker(Lk)/Im(Lk−1),
the k’th cohomology group of the complex V •



GEOMETRIC HOMOLOGICAL ALGEBRA

If each V k has a positive definite inner product <,>, then Lk∗

is defined

Important idea:

Ker(Lk) = Im(Lk−1)⊕ (Im(Lk−1)⊥ ∩Ker(Lk))

So

Hk(V •) ∼= Im(Lk−1)⊥ ∩Ker(Lk))

But Im(Lk−1)⊥ = Ker(Lk−1∗)

So Hk(V •) ∼= Ker(Lk) ∩Ker(Lk−1∗)



THE LAPLACIAN IN HOMOLOGICAL ALGEBRA

Basic construction:

∆k = Lk−1Lk−1∗ + Lk∗Lk, the k’th Laplacian

Now < ∆kv, v >=< Lk−1Lk−1∗v, v > + < Lk∗Lkv, v >
=< Lk−1∗v, Lk−1∗v > + < Lkv, Lkv >

So ∆kv = 0⇐⇒ Lkv = 0 and Lk−1∗v = 0

Define Hk(V •) = Ker(∆k), the harmonic cohomology of V •

Thus Hk(V •) ∼= Hk(V •)

Since
Ker(∆k) ⊆ Ker(Lk),

Every cohomology class in Ker(Lk)/Im(Lk−1) has a unique
harmonic representative in Hk(V •)



HARMONIC, EXACT AND CO-EXACT

Often, we represent all of the Lk’s in a complex by d, and the
basic relation is

d2 = 0

Now ∆d = d∗d+ dd∗

We can write V k = Ker(d)⊕Ker(d)⊥

Now Ker(d)⊥ = Im(d∗), and

Ker(d) = (Ker(d) ∩Ker(d∗))⊕ (Ker(d) ∩Ker(d∗)⊥)
= Hk ⊕ (Ker(d) ∩ Im(d))

But Im(d) ⊆ Ker(d), so

Ker(d) = Hk ⊕ Im(d)

Now V k = Ker(d)⊕Ker(d)⊥ = Ker(d)⊕ Im(d∗)

The final result is:

V k = Hk ⊕ Im(d)⊕ Im(d∗)
or equivalently

V k = Hk ⊕ Im(dd∗)⊕ Im(d∗d)

Note that these spaces are mutually orthogonal under <,>



THE DECOMPOSITION IN WORDS

Notation: Ker(d) are the closed elements, Im(d) are the exact
elements, Ker(d∗) are the co-closed elements, Im(d∗) are the
co-exact elements

(1) Every element decomposes uniquely into a sum of harmonic,
exact and co-exact elements.
(2) Every closed element decomposes uniquely into a sum of
harmonic and exact elements
(3) Every co-closed element decomposes uniquely into a sum
of harmonic and co-exact elements
(4) An element is harmonic if and only if it is closed and co-
closed



PROPERTIES OF ∆

∆∗ = ∆, i.e. ∆ is self-adjoint

< ∆v, v >≥ 0 for all v, with equality if and only if v is harmonic



THE LAPLACIAN WE KNOW AND LOVE

Note: So far, we have been dealing with finite-dimensional vec-
tor spaces, but a lot of this applies more generally.

C∞(R) = {smooth functions on R}

C∞c (R) denotes those with compact support, i.e. 0 outside of
some finite interval [−A,A] (A depends on the function)

Our complex is C∞(R)
d/dx−→C∞(R)

< f, g >=
∫∞
−∞ f(x)g(x) dx =

∫ A
−A f(x)g(x)dx

d = d/dx

To compute d∗, we have by definition∫
R
f(dg/dx) dx =

∫
R

(d∗f)g dx

Doing integration by parts over an [−A,A] that works for both
f and g,∫ A
−A f(dg/dx)dx = fg|A−A −

∫ A
−A(df/dx)g dx

But fg|A−A = 0, so

(d/dx)∗ = −(d/dx), i.e. d∗ = −d

At the left of the complex,

∆ = d∗d = −(d/dx) ◦ (d/dx) = −d2/dx2

This is the usual Laplacian, except for the minus sign (which
geometers prefer)



FUNCTIONS AND VECTOR FIELDS ON R3

C∞(R3) = {smooth functions on R3}
Vect(R3) = {smooth vector fields on R3}
= {Mî+Nĵ + P k̂ |M,N,P ∈ C∞(R3)}

Recall from calculus:

Curl ◦ ~∇ = 0; Div ◦ Curl = 0

So

C∞(R3)
~∇−→Vect(R3)

Curl−→Vect(R3)
Div−→C∞(R3)

is a complex

In order to define <,>, we use C∞c (R3), Vectc(R
3), the com-

pactly supported functions and vector fields

< f, g >=
∫
R3 fg dVol

< ~X, ~Y >=
∫
R3 < ~X, ~Y > dVol



ADJOINTS OF GRAD, CURL AND DIV

< ~∇f,Mî+Nĵ + P k̂ >=
∫
R3(fxM + fyN + fzP )dVol

If these have compact support, we can use the same integration
by parts method to get this to equal

−
∫
R3(fMx + fNy + fPz)dVol, and thus

~∇∗ = −Div

This of course, taking the adjoint of both sides, also gives

Div∗ = −~∇
A somewhat messier computation along the same lines shows

Curl∗ = Curl

At the left of the complex,

∆ = ~∇∗~∇ = −Div ◦ ~∇ = −(∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2),

i.e. minus the usual Laplacian

At the first Vect(R3) in the complex, a messier computation
shows

(Curl∗Curl+~∇~∇∗)(Mî+Nĵ+P k̂) is minus the usual Laplacian,
applied component by component.

Because there are no non-zero compactly supported harmonic
functions (use the mean value property on a large sphere), we
expect:

C∞c (R3) = Div(Vectc(R
3)) = Div~∇(C∞c (R3))

Vectc(R
3) = ~∇(C∞c (R3))⊕ Curl(Vectc(R

3))

Note: Of course, we need to use some elliptic operator theory
to make all this work for smooth functions and vector fields–I
have just concentrated on the formal side



FUNCTIONS AND VECTOR FIELDS ON THE TORUS

Instead, let’s look at the torus

T 3 = R3/Z3

We may think of functions and vector fields as being triply
periodic on R3

For functions on T 3,

Ker(∆) = R, i.e. harmonic functions on T are constants

The complex

C∞(T 3)
~∇−→Vect(T 3)

Curl−→Vect(T 3)
Div−→C∞(T 3)

has cohomology groups

R,R3,R3,R

Note that these are the same as the usual singular cohomol-
ogy groups of the torus. This is an example of De Rham’s
Theorem



THE RIGHT WAY TO THINK ABOUT ALL THIS

For R3, let dx, dy, dz be symbols that anti-commute, under
a multiplication denoted by ∧, i.e. permuting two of them
introduces a minus sign

dy ∧ dx = −dx ∧ dy

dx ∧ dx = −dx ∧ dx, forcing dx ∧ dx = 0

In the complex

C∞(R3)
~∇−→Vect(R3)

Curl−→Vect(R3)
Div−→C∞(R3)

we replace Mî+Nĵ + P k̂ in the first Vect(R3) by

Mdx+Ndy + Pdz, we call these 1-forms A1(R3)

and in the second Vect(R3) by

Mdy∧dz+Ndz∧dx+Pdx∧dy, we call these 2-forms A2(R3)

We replace f in the C∞(R3) on the right by

fdx ∧ dy ∧ dz, we call these 3-forms A3(R3)

and we leave f in the C∞(R3) on the left alone, we call these
0-forms A0(R3)



THE EXTERIOR DERIVATIVE

We now define a linear map d:Ak(R3) → Ak+1(R3), the ex-
terior derivative

For a function f , df = fxdx+ fydy + fzdz

You did this in calculus, but this time we mean it

To take d of a k-form, we leave the dx, dy, dz alone, take d of
each coefficient, and then collect terms using the rules for ∧

d(Mdx+Ndy+Pdz) = (Mxdx+Mydy+Mzdz)∧dx+(Nxdx+
Nydy +Nzdz) ∧ dy + (Pxdx+ Pydy + Pzdz) ∧ dz
= (Py −Nz)dy ∧ dz + (Mz − Px)dz ∧ dx+ (Nx −My)dx ∧ dy

Translating this back into vector fields, we see that

d = Curl in this case

Similarly,

d(Mdy∧dz+Ndz∧dx+Pdx∧dy) = Mxdx∧dy∧dz+Nydy∧
dz ∧ dz + Pzdz ∧ dx ∧ dy
= (Mx +Ny + Pz)dx ∧ dy ∧ dz

Translating back into vector fields and functions, we see that

d = Div in this case

Our complex is now

A0(R3)
d−→A1(R3)

d−→A2(R3)
d−→A3(R3)

called the De Rham complex



A BONUS: CROSS PRODUCT

Did you ever wonder where cross product came from, or why
R3 has it but the other Rn’s don’t?

(M1dx + N1dy + P1dz) ∧ (M2dx + N2dy + P2dz) = (N1P2 −
N2P1)dy∧dz+(P1M3−P3M1)dz∧dx+(M1N2−M2N1)dx∧dy

Translating 1-forms and 2-forms back into vector fields, we get
that this is just cross product

We can do wedge product of 1-forms on any Rn and get a 2-
form, but only on R3 and we identify back 2-forms with vector
fields



DE RHAM COHOMOLOGY ON MANIFOLDS

A smooth manifold M of dimension n is a reasonable topo-
logical space for which any small open set looks like an open
set in Rn (such an identification is called local coordinates)
with the condition that any two sets of local coordinates near
a given point are smooth functions of each other

If x1, x2, . . . , xn are local coordinates, then a k-form locally
looks like

ω =
∑

1≤i1<i2<···<ik≤n fi1i2···ikdxi1 ∧ dxi2 ∧ · · · dxik

This defines Ak(M) = {k−forms on M}

d:Ak(M)→ Ak+1(M) is defined similarly to on R3, and
d2 = 0

Hk(A•(M)) = {closed forms on M}/{exact forms on M}
is called the De Rham cohomology of M , denoted
Hk
DR(M)

De Rham’s Theorem says that Hk
DR(M) is canonically iso-

morphic to the singular cohomology Hk
sing(M,R)



MAXWELL’S EQUATIONS

~E = E1î+ E2ĵ + E3k̂ the electric field

~B = B1î+B2ĵ +B3k̂ the magnetic field

Maxwell’s Equations
(1) ~∇ · ~B = 0

(2) ~∇ · ~E = ρ

(3) ~∇× ~B = ~J + ∂ ~E/∂t

(4) ~∇× ~E = −∂ ~B/∂t

The relativistic way to think of this is on space-time R4 with
coordinates x, y, z, t

The electromagnetic 2-form is

Ω = B1dy ∧ dz +B2dz ∧ dx+B3dx∧ dy+E1dx∧ dt+E2dy ∧
dt+ E3dz ∧ dt

Amazingly,

dΩ = 0⇐⇒ (1), (4)

What about (2), (3)?



THE OTHER MAXWELL’S EQUATIONS

Special relativity is built on the Minkowski distance on R4

Distance from (x1, y1, z1, t1) to (x2, y2, z2, t2) is

((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − (t1 − t2)2)(1/2)

where we take the speed of light to be 1

Notice the minus sign before the (t1 − t2)2 term

We get an inner product on the space spanned by dx,dy,dz,dt:

(dx)2 + (dy)2 + (dz)2 − (dt)2

For example, for a 1-form ω = Adx + Bdy + Cdz + Ddt with
compact support,

< ω,ω >=
∫
R4(A2 +B2 + C2 −D2)dVol

and for a 2-form

ω = A1dy ∧ dz +A2dz ∧ dx+A3dx∧ dy +B1dx∧ dt+B2dy ∧
dt+B3dz ∧ dt,

< ω,ω >=
∫
R4(A2

1 +A2
2 +A2

3 −B2
1 −B2

2 −B2
3)dVol

Using this inner product, we can formally define d∗ using in-
tegration by parts. If we do this, the other Maxwell equations
are:

d∗Ω = J , where J is a 1-form whose four components incorpo-
rate ~J and ρ



MAXWELL’S EQUATIONS AS A WAVE EQUATION

(1) dΩ = 0

(2) d∗Ω = J

Now

H2(A•(R4)) = 0, so we can write

Ω = dA for some 1-form A, called the vector potential

In fact, since Im(d) = Im(dd∗), we can write

Ω = dd∗Φ for some 2-form Φ. Now if we take A = d∗Φ, then
d∗A = (d∗)2Φ = 0

So (2) can be rewritten as

d∗dA = J , or more suggestively

(dd∗ + d∗d)A = J

Now writing dd∗+d∗d as ∆, but remembering we are using the
Minkowski inner product, we get

∆A = J , where ∆ is, component by component, the operator

∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 − ∂2/∂t2

Comment: This is all formal. We no longer have elliptic oper-
ators.

More interesting comment: If the region we are working on has
non-trivial topology, we cannot define A globally on the region.
There is a famous physics experiment, the Aharonov-Bohm
effect, that shows this actually matters in the real world.



MAXWELL’S EQUATIONS IN A VACUUM

(1) dΩ = 0

(2) d∗Ω = 0

or equivalently

Ω is harmonic



TANGENT SPACE TO A MANIFOLD

M smooth manifold of dimension n, and p ∈M

Informal definition: Tp(M) = usual tangent space to Rn using
local coordinates

More elegant but more opaque definition: Ip =smooth func-
tions on a neighborhood of p vanishing at p

Tp(M) = dual space of (Ip/I2
p)

Analyst’s definition: Tp(M) = first-order linear differential op-
erators on M at p



RIEMANNIAN MANIFOLDS

Given a smooth manifold M , it is possible to define a distance
by putting a positive definite inner product on the tangent
space to M at each point–this is called a Riemannian metric

We choose local coordinates x1, x2, . . . , xn so at a given point
of M , dx1, . . . , dxn is an orthonormal basis

This lets us, by taking sums of squares of coefficients, define
at every point a positive definite inner product on k-forms for
every k

If we have a compact, oriented (not a Klein bottle!) manifold,
we can integrate this against dVol to get < ω1, ω2 >, a positive
definite inner product on Ak(M)

Now we can define d∗ and ∆ = dd∗ + d∗d and Hk(M)

Hodge, inspired by Maxwell’s equations in the vacuum, defined
harmonic forms by

dω = 0, d∗ω = 0

This is a stellar example of the interplay between applications
and pure mathematics.

Using elliptic operator theory, he proved

The Hodge Theorem: Every class in Hk
DR(M) is repre-

sented by a unique harmonic form

COR: Hk(M) ∼= Hk
DR(M) ∼= Hk

sing(M,R)

Comment: The question is–what is the payoff for doing this?
If we know more about the geometry of M , can we say more?
We can. But the payoff is especially great if we have a complex
manifold. Stay tuned.



LECTURE 2: Algebraic Cycles, Hodge Classes
and some Commutative Algebra

HYPERSURFACES OF DEGREE d

Set-up: A homogeneous polynomial F (z1, z2, . . . , zn) of de-
gree d is a polynomial all of whose monomials have total degree
d, e.g z3

1 + z2z
2
3 is homogeneous, but z3

1 + z2z3 is not. Alterna-
tively,

F (λz1, . . . , λzn) = λdF (z1, . . . , zn) for all λ ∈ C∗

Complex projective space CPn is
CPn = {lines through 0 in Cn+1} = Cn+1 − {~0}/ ∼,

where (z1, . . . , zn+1) ∼ (λz1, . . . , λzn+1) for λ ∈ C∗

Note that for a homogeneous polynomial F , while F is not a
function on CPn, X = {F = 0} defines a subset of CPn. X
is called a hypersurface of degree d or an (n − 1)-fold of
degree d

X is smooth if ~∇F = (∂F/∂z1, . . . , ∂F/∂zn+1) is never 0 ex-
cept at (0, 0, . . . , 0)



LINES ON SURFACES

A line L in CPn is defined by n− 1 independent linear equa-
tions

We will be discussing smooth surfaces X of degree d in CP3

ask which ones contain a line

d = 1 A plane contains a 2-parameter family of lines

d = 2 A smooth quadric surface contains two 1-parameter fam-
ilies of lines

d = 3 A smooth cubic surface contains exactly 27 lines (this is
a famous theorem)

d = 4 It is one condition for a smooth surface of degree 4 to
contain a line



CONDITIONS TO CONTAIN A LINE

The homogeneous polynomials of degree d on CP1 have basis
zd1 , z

d−1
1 z2, . . . , z

d
2 , so the dimension is d+ 1

A hypersurface X = {F = 0} contains a line L if and only if
the restriction F |L = 0

It is therefore d+ 1 conditions for a hypersurface X of degree
d to contain a given line L

How many lines are there in CP3? A line in determined by
two distinct points p1, p2, but we can slide each point along
the line. So the dimension of {lines in CP3} is

3+3-1-1 =4

Alternatively, the line is defined by 2 equations, hence a matrix(
a1 a2 a3 a4

b1 b2 b3 b4

)
We can usually by Gaussian elimination change basis to(

1 0 ∗ ∗
0 1 ∗ ∗

)
This has 4 free entries, hence dimension 4. The other Gaussian
elimination possibilities have lower dimension, e.g.(

1 ∗ 0 ∗
0 0 1 ∗

)
which has dimension 3. These possibilities lead to Schubert
cells. Colleen Robles is an expert on much more sophisticated
versions of these



DIMENSION COUNT TO CONTAIN A LINE

There are d+ 1 conditions to contain a given line L

There is a 4-dimensional family of lines in PC3

It is therefore

(d+ 1)− 4 = d− 3

conditions for a surface of degree d to contain *some* line

Notice that this fits all of the examples given before

It turns out that this illustrates a much more general phe-
nomenon



ALGEBRAIC CURVES

A hyperplane in CPn is just a hypersurface of degree 1, it is
isomorphic to CPn−1

An algebraic curve C in CPn is defined by homogeneous
polynomials

C = {F1 = 0, . . . , Fr = 0}, where we decide it is a curve if
its intersection with almost all hyperplanes H is a collection of
points. The number of points is the same for almost all H, and
this is called the degree of C

A line, of course, has degree 1

As you may suspect, I am glossing over some subtleties here,
notably issues of multiplicity–the analogue of an equation hav-
ing a multiple root. The part that is not intuitive is that the
number r of equations we need may be larger than n− 1

Example: C is defined by the 2× 2 minors of the matrix(
z1 z2 z3

z2 z3 z4

)
This is called the twisted cubic, which has degree 3

A particularly simple type of curve contained in a surface X in
CP3 is a complete intersection curve on X, C = X ∩X ′,
where X ′ is a surface of deg d′

Bezout’s Theorem (a special case) A complete intersection
C has degree dd′

These are the curves that any X has. Notice that a line, al-
though on its own it is the intersection of two planes, can never
be a complete intersection curve on X unless X is a plane



CONDITIONS TO CONTAIN OTHER CURVES

The restriction of homogeneous polynomials of degree d to a
plane conic is a space of dimension

(d+ 2)(d+ 1)/2− d(d− 1)/2 = 2d+ 1

There is a 3-dimensional set of planes in CP3, and on each
plane, a 5-dimensional family of plane conics

So it is 2d+ 1− (5 + 3) = 2d− 7 conditions on a hypersurface
of degree d to contain some plane conic

The restriction of homogeneous polynomials of degree d to a
twisted cubic is a space f dimension 3d+ 1

There is a 12-dimensional family of twisted cubics in CP3

So it is 3d+ 1− 12 = 3d− 11 conditions for a hypersurface of
degree d to contain some twisted cubic

MORAL: We expect that more complicated curves im-
pose more conditions

Like all morals, this is not strictly true, but for a fixed curve it
becomes true for d >> 0.

Notice in our examples that all these curves give 1 condition
for d = 4



THE NOETHER-LEFSCHETZ THEOREM

Noether-Lefschetz Theorem: For almost all surfaces X of
degree d ≥ 4, the only algebraic curves on X are complete
intersection curves X ∩X ′

Noether’s strategy for proving this was to look at increasingly
complicated types of algebraic curves, and to show that they
imposed a progressively larger number of conditions

Unfortunately, there are a countable number of different types
of algebraic curves, and so this strategy never realy worked

Lefschetz, as he understood better the topology of algebraic va-
rieties, was able to give a proof using the monodromy group,
which tracks how cohomology groups of surfaces of degree d fit
together in a family

We will also take a roundabout approach going via the topol-
ogy of algebraic varieties, as a way of illustrating the power of
Hodge theory

As a bonus, we will obtain the:

Explicit Noether-Lefschetz Theorem [G]: Containing a
non-complete-intersection algebraic curve imposes at least d−3
conditions on a smooth surface of degree d. (= holds in the case
of lines, and for d ≥ 5, this is the only type of curve for which
we get equality–but we won’t show this)



COMPLEX MANIFOLDS

A complex manifold M of dimension n has a reasonable
topology and locally has complex local coordinates z1, . . . , zn
mapping that neighborhood to an open set in Cn.

Another set of complex local coordinates w1, . . . , wn overlap-
ping z1, . . . , zn must be related to it by (on the overlap) an
analytically invertible transformation

w1 = f1(z1, . . . , zn), . . . , wn = fn(z1, . . . , zn)

where the fi are analytic functions, i.e locally convergent power
series in z1, . . . , zn

If zj = xj + iyj is the decomposition of the local coordinates
into real and imaginary parts, then

dzj = dxj + idyj , dz̄j = dxj − idyj
There are also partial derivatives

∂/∂zj = ∂/∂xj − i∂/∂yj
∂/∂z̄j = ∂/∂xj + i∂/∂yj



A TALE OF TWO BASES

There are two bases over C for the 1-forms:

dx1, . . . , dxn, dy1, . . . , dyn

and

dz1, . . . , dzn, dz̄1, . . . , dz̄n

For k forms, bases look like

dxi1 ∧ · · · ∧ dxip ∧ dyj1 ∧ · · · ∧ dyjq
where p+ q = k, and

dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq
where p+ q = k. Linear combinations of the latter, with func-
tion coefficients and p, q fixed, are called (p, q)-forms



THE CAUCHY-RIEMANN EQUATIONS:
ELEGANT VERSION

f(z) = u+ iv

∂f/∂z̄ = (∂/∂x+ i∂/∂y)f

= (ux + iuy) + i(vx + ivy)

= (ux − vy) + i(uy + vx)

So ∂f/∂z̄ = 0⇔ ux = vy and uy = −vx



THE OPERATORS ∂ and ∂̄

The Cauchy-Riemann equations are equivalent to saying:

f(z1, . . . , zn) is analytic ⇐⇒ ∂f/∂z̄j = 0 for all j

There are now two operators taking functions to 1-forms:

∂f =
∑
j(∂f/∂zj)dzj

∂̄f =
∑
j(∂f/∂z̄j)dz̄j

We can extend these to differential forms by acting on the
coefficients and leave the dzj and dz̄j ’s alone

When we do this, we get:

d = ∂ + ∂̄, and

(1) ∂2 = 0

(2) ∂∂̄ = −∂̄∂

(3) ∂̄2 = 0

Note that f is analytic if and only if ∂̄f = 0



(p, q)-FORMS

Instead of the local basis dx1, . . . , dxn, dy1, . . . , dyn for the 1-
forms, we can use dz1, . . . , dzn, dz̄1, . . . , dz̄n

For 2-forms, a basis then looks like things of the form:

dzi ∧ dzj : forms of type (2, 0)

dzi ∧ dz̄j : forms of type (1, 1)

dz̄i ∧ dz̄j : forms of type (0, 2)

In general, a local basis for k-forms decomposes into those with
p dz’s and q dz̄’s with p+ q = k

These are called forms of type (p, q), and the set of smooth
global (p, q)-forms is denoted Ap,q(M)

Thus Ak(M,C)) =
⊕

p+q=k A
p,q(M)

The C is there to indicate that the coefficients are complex-
valued functions

Note

∂:Ap,q(M)→ Ap+1,q(M)

∂̄:Ap,q(M)→ Ap,q+1(M)



A MOMENTARY DISAPPOINTMENT

One might reasonably hope that for a complex manifold:
Hk
DR(M,C) would decompose into a sum of cohomology using

(p, q) forms for p+ q = k

Equivalently, a d-closed k-form ω would decompose into the
sum of d-closed (p, q)-forms for p + q = k, plus perhaps a d-
exact form

Unfortunately, this doesn’t happen

However, it does happen for something called a Kähler man-
ifold. Fortunately, smooth hypersurfaces, and actually all
smooth algebraic varieties that are subvarieties of some CPn–
these are called projective varieties–are Kähler manifolds



RIEMANNIAN AND HERMITIAN METRICS

Riemannian metrics are modeled on the inner product on Rn:

< v,w >=
∑
j vjwj

On a complex manifold, a Hermitian metric is a Hermitian
positive definite inner product modeled on the inner product
on Cn:

< v,w >=
∑
j vjw̄j

Now for a Riemannian metric, we can always choose local co-
ordinates x1, . . . , xn centered on the point p, i.e. xj(p) = 0 for
all j, so that, for 1-forms

< dxi, dxj >= δij +O(‖x‖2)

These are called geodesic local coordinates at p

For a complex manifold with a Hermitian metric, we would like
to find local complex coordinates z1, . . . , zn centered at p such
that

< dzi, dzj >= δij +O(‖z‖2)

This is not always possible, but when it is, we say that the
Hermitian metric is a Kähler metric



WHAT’S SO GREAT ABOUT KÄHLER MANIFOLDS?

Once we have a compact complex manifold with a Hermitian
metric, we can define d∗, ∂∗, ∂̄∗ and

∆d = dd∗ + d∗d

∆∂ = ∂∂∗ + ∂∗∂

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

Now ∆d may not preserve the (p, q) type, but by definition

∆∂ :Ap,q(M)→ Ap,q(M)

∆∂̄ :Ap,q(M)→ Ap,q(M)

For Kähler manifolds, we have the wonderful identities:

∆∂ = ∆∂̄ = (1/2)∆d



HARMONIC (p, q)-FORMS AND
THE HODGE DECOMPOSITION

Let Hp,q(M) = Ker(∆∂̄ :Ap,q(M)→ Ap,q(M)) =

{ω ∈ Ap,q(M) | ∂̄ω = 0, ∂̄∗ω = 0} =

{ω ∈ Ap,q(M) | ∂ω = 0, ∂∗ω = 0}

Since d = ∂ + ∂̄, we see that forms in Hp,q are d-closed

This has the really great consequence that:

(1) Hp,q(M) ⊆ Hp+q(M)

(2) Hk(M) =
⊕

p+q=kHp,q(M) (the Hodge decomposition)

Although the harmonic spaces depend on the choice of Kähler
metric, letting

Hp,q(M) = {∂̄−closed (p, q)−forms}/{∂̄−exact (p, q)−forms}
the decomposition

Hk
DR(M,C) =

⊕
p+q=kH

p,q(M) is independent of this

This is called the Hodge decomposition



INTEGRATION OF DIFFERENTIAL FORMS

On an n-dimensional real manifold M , then if M is compact
and oriented, and ω ∈ An(M),∫
M
ω makes sense

Locally, using properly oriented local coordinates x1, . . . , xn,

ω = f(x1, . . . , xn)dx1 ∧ · · · ∧ dxn and we can do the usual∫
U
f(x1, . . . , dxn)dx1dx2 · · · dxn

over a U contained in the coordinate patch we are working in.

Differential forms were invented to do integration, and they
transform in just the right way that the answer is independent
of the choice of oriented local coordinates

Now we add up the results of these local calculations over the
entire manifold

If N is a k-dimensional submanifold of M or even a topological
k-chain, and ω ∈ Ak(M), we can use a similar method to make
sense of∫
N
ω



POINCARÉ DUAL FORM

If N is a k-dimensional submanifold (or topological k-cycle) of
an n-dimensional compact oriented manifold M , there exists

ηN ∈ An−k(M) with dηN = 0 such that

For all ω ∈ Ak(M) with dω = 0,∫
N
ω =

∫
M
ω ∧ ηN

ηN is called a Poincaré dual form for N , and

[ηN ] ∈ Hn−k
DR (M)

is called the Poincaré dual class of N



INTEGRATION: COMPLEX CASE

For a compact complex manifold M of dimension n, then as a
real manifold it has dimension 2n, it is always orientable with a
canonical orientation, and ω ∈ A2n(M,C) in local coordinates
will look like

ω = f(z1, . . . , zn, z̄1, . . . , z̄n)dz1 ∧ · · · dzn ∧ dz̄1 · · · ∧ dz̄n
= (power of i)f(z1, . . . , zn, z̄1, . . . z̄n)dx1 ∧ dy1 · · · ∧ dxn ∧ dyn



POINCARÉ DUAL FORM: COMPLEX CASE

If N is a k-dimensional complex submanifold of an n dimen-
sional compact Kähler manifold M , then

For ω ∈ Ap,q(M), with p+ q = 2k and dω = 0,∫
N
ω = 0 unless (p, q) = (k, k)

We can use this to arrange that

ηN ∈ An−k,n−k(M)



HODGE CLASSES

We now let X be a smooth projective algebraic variety and Z
an algebraic subvariety of X

The codimension of Z is dim(X)− dim(Z)

Let Z have codimension p

Now H2p
DR(X,C) ∼= H2p

sing(X,C)

In topology, we also have the integral cohomology

H2p
sing(X,Z)

and the coefficient map

j:H2p
sing(X,Z)→ H2p

sing(X,C)

Because Z represents a topological 2dim(Z)-chain, from topol-
ogy we get that

[ηZ ] ∈ Hp,p(X) ∩ j(H2p
sing(X,Z)) ⊂ H2p

sing(X,C)

We define

Hdgp(X) = Hp,p(X) ∩ j(H2p
sing(X,Z)),

the Hodge classes of X in codimension p

Theorem: The Poincaré dual class of an algebraic subvariety
is a Hodge class



ALGEBRAIC CYCLES

By analogy with what is done in topology, we define the codi-
mension p algebraic cycles Zp(X) =

{
∑
i niZi | ni ∈ Z, Zi a codim p alg subvariety for all i, ni ∈

Z for all i}

We think of these as formal linear combinations

There is a map

η:Zp(X)→ Hdgp(X) given by∑
i niZi 7→

∑
i ni[ηZi ] (Cycle class map)

Originally, Hodge conjectured that this map is surjective.
Atiyah and Hirzebruch found a counterexample, but this in-
volved a torsion phenomenon:

The Hodge Conjecture: For any Hodge class on a smooth
projective algebraic variety, some non-zero integral multiple of
it is the Poincaré dual class for some algebraic cycle

Another way to put this is:

Zp(X,Q) = {
∑
i riZi | ri ∈ Q}

Hdg(X,Q) = Hp,p(X) ∩ j(H2p
sing(X,Q))

ηQ:Zp(X,Q)→ Hdgp(X,Q)

defined analogously

The Hodge Conjecture: ηQ is surjective



THE CASE OF SURFACES OF DEGREE d

For X a smooth surface of degree d in CP3, and C an algebraic
curve on X,

[ηC ] ∈ Hdg1(X)

Now, there is a distinguished Hodge class: if H is a hyperplane,
then

[ηX∩H ] is called the hyperplane class

Using some topology, we can show that the hyperplane class is
not a non-trivial integral multiple of another integral cohomol-
ogy class

For a complete intersection curve X ∩X ′, where X ′ has degree
d′,

[ηX∩X′ ] = d′[ηX∩H ]

With some work using standard algebraic geometry plus some
topology,

An algebraic curve C on X is a complete intersection on X if
and only if [ηC ] is an integral multiple of [ηX∩H ]

This successfully rephrases the Noether-Lefschetz problem as:

Hodge-theoretic Noether-Lefschetz: Show that for almost
all surfaces of degree d ≥ 4,

Hdg1(X) = Z[ηX∩H ]



FAMILIES OF COMPLEX MANIFOLDS

A holomorphic family of complex manifolds

π:X → S

is a complex manifold such that S is a complex manifold, π is
analytic and dπ is surjective at all points. It follows that

Xs = π−1(s)

is a complex manifold for all s of dimension dim(X )− dim(S)

S is called the parameter space

If S is contractible, then all of the Xs are diffeomorphic, and
there is a natural homotopy class (or even isotopy class) of
diffeomorphisms between Xs1 , Xs2 for any s1, s2 ∈ S

In particular, Hk
sing(Xs1 ,Z), Hk

sing(Xs2 ,Z) have a natural iso-
morphism between them

When π1(S) 6= 0, there is a group homomorphism

ρ:π1(S, s)→ Aut(Hk
sing(Xs,Z))

called the monodromy representation

Analyzing the monodromy is the key concept in Lefschetz’s
proof of Noether-Lefschetz.



FAMILIES OF HYPERSURFACES OF DEGREE d

If we look at

F + sG,

where F , G are hypersurfaces of degree d and F is smooth,
then one can show

Xs = {F + sG = 0} is smooth for |s| < ε for some small ε > 0

Similarly for

F +
∑
I sIz

I , where

I = (i1, i2, i3, i4) with all ij ∈ Z≥0 and i1 + · · ·+ i4 = d

zI = zi11 z
i2
2 z

i3
3 z

i4
4

which is smooth for small values of the sI



VARIATION OF HODGE STRUCTURE

Given a smooth family X of Kähler manifolds with S con-
tractible, we can think of

Hk
sing(Xs,C) as a fixed vector space V

and the Hodge decomposition as varying with s

Griffiths discovered:

Hp,q(Xs), as a subspace of Hk
DR(Xs,C), does not vary analyt-

ically

but the Hodge filtration

F pHk
DR(Xs,C) =

∑
p′≥pH

p′,k−p′(Xs) does vary analytically

as a subspace of Hk
DR(Xs,C)

For example,

F 2H2(Xs,C) = H2,0(Xs)

F 1H2(Xs,C) = H2,0(Xs)⊕H1,1(Xs)

F 0H2(Xs,C) = H2,0(Xs)⊕H1,1(Xs)⊕H0,2(Xs) = H2(Xs,C)

Note F k ⊆ F k−1 ⊆ · · · ⊆ F 0 = Hk
DR(X,C),

i.e. the Hodge filtration is a decreasing filtration

F p/F p+1 ∼= Hp,k−p(Xs)



DERIVATIVE OF A VARIABLE SUBSPACE
OF A FIXED VECTOR SPACE

Ws an analytically varying subspace of a fixed vector space V

Choose e1(s), . . . , em(s) an analytically varying basis for Ws

ej 7→ πV/Ws
(dej/ds) gives a well-defined linear map

d/ds:Ws → V/Ws

If we have many variables, we get

TsS → HomC(Ws, V/Ws)

∂/∂si 7→ (ej 7→ πV/Ws
(∂ej/∂si))

A more elegant way to think of this is

TsS ⊗Ws → V/Ws

∂/∂si ⊗ ej 7→ πV/Ws
(∂ej/∂si)



GRIFFITHS TRANSVERSALITY
aka

INFINITESIMAL PERIOD RELATION

If we look at

d/ds(e1(s) ∧ e2(s) ∧ ek(s))

= (de1/ds) ∧ e2 ∧ · · · ∧ ek + · · ·+ e1 ∧ e2 · · · ∧ (dek/ds)

we see that the derivative of something with p dz’s and q dz̄’s
has at least p− 1 dz’s

The upshot is that for all p,

d/ds:F p → V/F p

actually lands in

F p−1/F p

This discovery is known as Griffiths transversality or the
infinitesimal period relation

Note that we get maps

TsS ⊗ F p/F p+1 → F p−1/F p, and thus

TsS ⊗Hp,k−p(Xs)→ Hp−1,k−p+1(Xs)

For surfaces, this gives us a map

TsS ⊗H2,0(Xs)→ H1,1(Xs)



A COMMENT ABOUT DERIVATIVES

A basic principle about differentiable functions is:

If dfs0 6= 0, then we cannot have f ≡ 0 on S

For γ ∈ Hdg1(Xs0), we may write for nearby s

γ = γ2,0(s) + γ1,1(s) + γ0,2(s)

in H2
DR(Xs)

Now

γ0,2(s0) = 0, but if dγ0,2
s0 6= 0, then γ cannot be of type (1, 1)

on all of S, and hence

γ can only be a Hodge class on a lower-dimensional subset of
S

Because γ0,2(s) is an analytic section of the analytic bundle
F 0/F 1, its zero locus

{s | γ ∈ Hdg1(Xs)}

is locally defined by analytic functions, i.e. the zero locus is
locally an analytic subvariety of S

Unless γ0,2(s) ≡ 0 for all s, this zero locus will be a lower-
dimensional analytic subvariety of S



DERIVATIVE OF A HODGE CLASS

In a smooth family X = {Xs0}, if γ ∈ H2p
DR(Xs0) is a Hodge

class, we may take γ to be part of a basis for F p

As we vary in the family, γ continues to be an integral class,
but it may not continue to be in H1,1

The condition that it does remain a Hodge class is that under

∂/∂sj :H
p,p(Xs)→ Hp−1,p+1(Xs),

γ 7→ 0 for all s and all j, or more elegantly

TsS ⊗Hp,p(Xs)→ Hp−1,p+1(Xs)

has γ in the right kernel

Using some dualities, this turns out to be equivalent to saying

γ is orthogonal to the image of TsS ⊗Hp+1,p−1 → Hp,p

for all s

(A map A⊗B → C gives a map A⊗ C∨ → B∨

The right kernal of A ⊗ B → C is dual to the cokernel of
A⊗ C∨ → B∨

A⊗B → C has right kernel zero⇔ A⊗C∨ → B∨ is surjective)



WHEN THE SET OF s FOR WHICH Xs

HAS A HODGE CLASS
IS A LOWER-DIMENSIONAL SUBVARIETY

A consequence of the foregoing is:

THEOREM: If at some point,

TsS ⊗Hp+1,p−1(Xs)→ Hp,p(Xs) is surjective,

then the set of s for which Xs has a Hodge class is a
lower-dimensional analytic subvariety of S

It is actually the union of a countable number of proper sub-
varieties of S

For hypersurfaces or for projective varieties in general, since
[H ∩ Xs]

p is always a Hodge class, we modify this to looking
at ([H ∩Xs]

p)⊥ ⊆ Hp,p(Xs)

THEOREM: If at some point,

TsS ⊗ Hp+1,p−1(Xs) → ([H ∩ Xs]
p)⊥ ⊆ Hp,p(Xs) is surjec-

tive,

then the set of s for which Xs has a Hodge class other
than rational multiples of [H ∩ Xs]

p is a lower dimen-
sional analytic subvariety of S

The set of s where there are Hodge classes other than rational
multiples of [H ∩Xs]

p is the Noether-Lefschetz locus

We have reduced the Noether-Lefschetz Theorem to asking
whether TsS ⊗H2,0(Xs)→ ([H ∩Xs])

⊥ is surjective



HODGE GROUPS OF SURFACES OF DEGREE d

F = F (z1, z2, z3, z4) a homogeneous polynomial of degree d

J(F ) = ideal generated by ∂F/∂z1, . . . , ∂F/∂z4, the Jacobi
ideal

X = {F = 0} is smooth ⇔ J(F ) is base-point free

Base point free for an ideal means that there is no z other
than (0, 0, 0, 0) for which all polynomials in the ideal vanish

Let V m = {homogeneous polynomials of degree m}

For I a homogeneous ideal,

Im denotes {homogeneous degree m part of I}

H2,0 ∼= V d−4

[X ∩H]⊥ ⊂ H1,1 ∼= V 2d−4/J(F )2d−4

We denote [X ∩H]⊥ = H1,1
pr (X)

Note that for d < 4, all integral classes in H2(X) are Hodge
classes

This explains the role of d ≥ 4 in the Noether-Lefschetz theo-
rem



TANGENT TO THE PARAMETER SPACE

S = {hypersurfaces of degree d}/projective equivalence

Here, projective equivalence is the action of GL(4,C) on
CP3, taking X 7→ gX

Tangent to the action of GL(4,C) on CP3 are the global vector
fields on CP3, whose action on X gives the tangent space to
projective equivalence

These vector fields are spanned by zi∂/∂zj for 1 ≤ i, j ≤ 4

The first order action of zi∂/∂zj on F is zi∂F/∂zj

TF (V d/projective equivalence) ∼= V d/J(F )d



DERIVATIVE OF THE HODGE GROUPS FOR
SURFACES OF DEGREE d

THEOREM (Carlson-Griffiths): The map

TFS ⊗H2,0(X)→ H1,1
pr (X), i,e, of

V d/J(F )d ⊗ V d−4 → V 2d−4/J(F )2d−4

is multiplication, i.e.

G⊗ P 7→ GP

Easy result: Multiplication V a⊗V b → V a+b is surjective when
a, b ≥ 0

Proof: It is enough to see that every monomial of degree a+ b
is the product of monomials of degrees a and b

THEOREM (Infinitesimal Noether-Lefschetz Thm)

TFS ⊗H2,0(X)→ H1,1
pr (X) is surjective when d ≥ 4

COROLLARY (Noether Lefschetz Theorem)

This argument is due to Carlson-G-Griffiths-Harris



EXPLICIT NOETHER-LEFSCHETZ THEOREM

There is a result from commutative algebra that is enough to
show that every component of the Noether-Lefschetz locus has
codimension ≥ d− 3

W ⊆ V d a base-point free linear subspace

c = dim(V d/W )

For b ≥ c,

W ⊗ V b → V d+b is surjective

In the geometric case, we have that if S is the parameter space
of an irreducible component of the Noether-Lefschetz locus and

TFS = W , then J(F )d ⊆ W , which for F smooth forces W to
be base-point free

The algebraic result is part of a general Koszul vanishing the-
orem I proved. I eventually found another proof using results
of Macaulay and Gotzmann



LECTURE 3: Hodge Structures and Mumford-Tate Domains

STRUCTURE OF ROTATIONS IN R2 AND R3

SO(n) = {A ∈ GL(n,R) | AtA = I, det(A) = 1}

= {A ∈ GL(n,R) preserving angles, lengths, and orientation}

= {A | columns have length 1,pairwise perpendicular}

SO(2) = {Rθ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
}

SO(3) = {rotations about some axis}

Proof: A ∈ SO(3) has an eigenvector v, Av = λv, |λ| = 1

One root of characteristic polynomial, a cubic, is real. That λ
is ±1

Complex eigenvectors come in conjugate pairs, and then λλ̄ >
0. So for one real eigenvalue λ and a conjugate µ, µ̄, λµµ̄ = 1,
so λ > 0, so λ = 1

For three real eigenvalues, λ1λ2λ3 = 1, all ±1, so one of these
must be +1

If v has eigenvalue +1, then if V = v⊥, A|V ∈ SO(2)

There is thus a choice of properly oriented orthonormal basis
so that A has the matrix

A =

(
Rθ 0
0 1

)
Another way to say this is that A is conjugate in SO(3) to a
matrix of this form



STRUCTURE OF ROTATIONS IN Rn

A similar argument shows that A ∈ SO(n) has a matrix in
terms of some properly oriented orthonormal basis

A =


Rθ1 0 . . . 0
0 Rθ2 . . . 0
. . . . . . . . . . . .
0 0 . . . Rθk

 if n = 2k and

A =


Rθ1 0 . . . 0 0
0 Rθ2 . . . 0 0
. . . . . . . . . . . . 0
0 0 . . . Rθk 0
0 0 0 0 1

 if n = 2k + 1

Alternatively we can say every A ∈ SO(n) is conjugate in
SO(n) to a matrix of this form

The set of matrices of either of these forms in a given basis is
isomorphic to

T = S1 × S1 × · × S1 = (S1)k, a k-dimensional torus

Every element of SO(n) is conjugate to an element of T



LIE GROUPS AND THEIR LIE ALGEBRAS

A Lie group G is a group that is also a smooth manifold, such
that multiplication and inversion are C∞ maps

Left multiplication Lg:G→ G is the map

h 7→ gh

So dLg:TeG ∼= TgG

We may use this to extendX ∈ TeG to a smooth left invariant
vector field on G by X(g) = (dLg)e(X) for all g ∈ G

The Lie algebra of G is

g = TeG = {Left invariant vector fields on G}

On a manifold M , vector fields X,Y on M , there is a vector
field [X,Y ] defined by, for functions f on M ,

[X,Y ]f = X(Y f)− Y (Xf), the Lie bracket of X and Y

It is a measure of the failure of differentiation along X and Y
to commute

If X,Y are left-invariant, then so is [X,Y ], so

X,Y ∈ g gives an element [X,Y ] ∈ g

This satisfies the Jacobi identity

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0



ACTIONS OF S1

Consider a continuous group homomorphism

φ:S1 → Aut(V,R)

If <,> is a positive definite inner product on V , then we can
create an S1-invariant positive definite inner product by

< v,w >inv=
∫ 2π

0
< φ(θ)v, φ(θ)w > dθ

Using this inner product, φ:S1 → O(n), where n = dim(V )

Now det(φ(θ)) = ±1, is continuous in θ, and is 1 at 0 because
θ(0) = I. So

φ:S1 → SO(n)

Now the φ(θ) mutually commute since S1 is commutative, so
since each of them can be diagonalized, they can be simul-
taneously diagonalized. Hence after an orientation preserving
orthonormal change of basis,

φ:S1 → T ⊆ SO(n)



WEIGHTS OF S1 ACTIONS

Group homomorphisms S1 → (S1)k are of the form

θ 7→ (m1θ,m2θ, . . . ,mkθ), where mi ∈ Z for all i

More abstractly, if T = t/Λ with t ∼= Rk the Lie algebra of T
as a group and Λ ∼= Zk a lattice, then

~m = (m1, . . . ,mk) ∈ Λ is called the weight of φ, and we can
write φ~m for φ



EIGENSPACES OF S1 ACTIONS

The eigenvalues of Rθ are eiθ, e−iθ

The eigenvalues of φ~m are e±im1θ, . . . , e±imkθ

We can write the complexification of V as

VC =
⊕

j V
j , where the direct sum is orthogonal and

φ(θ) is ejiθI on V j , i.e.

V j is the ejiθ eigenspace of φ(θ) for all θ

If φ = φ~m, then V j is non-zero only when j = ±mq for some q



INTERSECTION PAIRING

For a smooth projective variety X of dimension n we have that

H2n
DR(X) ∼= R

under the map

ω 7→
∫
X
ω

We thus get a map

Hn
DR(X)×Hn

DR(X)→ H2n
DR(X) ∼= R

(ω1, ω2) 7→
∫
X
ω1 ∧ ω2

this is symmetric in ω1, ω2 for n even and alternating for n odd

It comes from the cup product map

Q:Hn
sing(X,Z)×Hn

sing(X,Z)→ H2n
sing(X,Z) ∼= Z

We call Q the intersection pairing

Comment: The key case in Hodge theory is looking at Hn(X)
for X of complex dimension n. We can reduce to this case
because of the Lefschetz hyperplane theorem



POLARIZED HODGE STRUCTURES OF WEIGHT n

Set-up: V a finite dimensional real vector space, Λ ⊂ V a
lattice,

Λ ∼= Zm,

V = Λ⊗Z R, so V ∼= Rm

Q: Λ× Λ→ Z a non-degenerate Z-bilinear map

Q(y, x) = (−1)nQ(x, y) for all x, y ∈ Λ

VC ∼=
⊕

p+q=n V
p,q, with V q,p = V̄ p,q

Q(V p,q, V p
′,q′) = 0 unless p′ = q, q′ = p

Note ip−qQ = in−2qQ is Hermitian. We ask that

Positivity condition: ip−qQ is positive definite on V p,q

If so, we say that (V,Λ, Q) is a polarized Hodge structure
of weight n

Comment: For X a smooth projective variety of dimension n, it
is almost true that (Hn

DR(X), Hn
sing(X,Z), intersection pairing)

is a polarized Hodge structure. To make this work, we need
to restrict to the primitive cohomology. For n = 2, the
primitive cohomology is [H ∩X]⊥ ⊂ H2

DR(X). The positivity
condition on the intersection form on the primitive cohomology
is a piece of the Hodge index theorem, and incorporates the
information in the Lefschetz hyperplane theorem



WHERE POSITIVITY COMES FROM

dz ∧ dz̄ = (dx+ idy) ∧ (dx− idy) = −2idx ∧ dy

If ω = f(z)dz locally, then

ω ∧ ω̄ = |f(z)|2dz ∧ dz̄ = −2i|f(z)|2dx ∧ dy

So if ω ∈ H1,0(X) for a Riemann surface X,

ip−q = i1−0 = i, and

i
∫
X
ω ∧ ω̄ gets local contribution

∫
2|f(z)|2dx ∧ dy > 0 from

this coordinate patch

Similarly, if ω ∈ H2,0(X) for X a surface,

ω = f(z1, z2)dz1 ∧ dz2 locally, then

ω ∧ ω̄ = |f |2dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2

= −|f |2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

= −(−2i)2|f |2dx1 ∧ dy1 ∧ dx2 ∧ dy2

= −4|f |2dx1 ∧ dx2 ∧ dy1 ∧ dy2

So i2−0
∫
X
ω ∧ ω̄ gets local contribution∫

4|f |2dx1 ∧ dx2 ∧ dy1 ∧ dy2 > 0

Comment: We are choosing our orientation so dx1∧dx2∧dy1∧
dy2 is properly oriented–this is unchanged in sign if we switch
the order of z1 and z2, as the switches of dx1, dx2 and dy1, dy2

cancel out

The case of (1,1) forms is more complicated, and this is where
primitivity shows up



POLARIZED HS: ELEGANT VERSION

With V , Λ, Q as before, let

φ:S1 → Aut(V,R) be a continuous group homomorphism such
that

Q is φ(θ)-invariant for all θ

Let VC =
⊕
V j be the eigenspace decomposition for φ

Assume these are non-zero only for j with j ≡ n(mod 2)

Define V (n+j)/2,(n−j)/2 = V j for all j

Put another way, V p,q = V p−q for p+ q = n

The condition to have a polarized Hodge structure is then:

ijQ is positive definite on V j

Thus:

A polarized Hodge structure of weight n is a continuous
group homomorphism φ:S1 → Aut(V,R) such that Q
is φ-invariant, non-zero eigenspaces V j have the same
parity as n and ijQ is positive definite on V j for all j.
We set V p,q = V p−q for p+ q = n

Comment: Not surprisingly, this elegant way of doing things
goes back to Deligne



GROUP REPRESENTATIONS

Given a Lie group G, and a finite dimensional real vector space
V , a continuous group homomorphism

ρ:G→ Aut(V,R) is called a representation of G over R

If Q is a non-degenerate symmetric or alternating bilinear form
on V ,

AutR(V,Q) will denote the real linear automorphisms of V
preserving Q



ADJOINT REPRESENTATION

Given a Lie group G and g ∈ G, conjugation gives a map

cg:G→ G

h 7→ ghg−1

The derivative of cg at the identity is a map

dcg:TeG→ TeG

Identifying TeG = g, we can rewrite this as

dcg: g→ g, and we denote Adg = dcg, giving a map

Ad:G→ AutR(g), the adjoint representation

The derivative of this map at the identiy in turn gives a map

dAde:TeG→ EndR(g)

Identifying TeG = g, we get a map

dAde: g→ EndR(g)

We call this map

ad: g→ EndR(g)

X 7→ adX

Key formula: adX(Y ) = [X,Y ], i.e.

adX = [X, ·]



REPRESENTATIONS OF LIE ALGEBRAS

For a vector space V , EndR(V ) can be made into a Lie algebra
by setting

[A,B] = AB −BA

EndR(V ) is the Lie algebra of AutR(V )

A linear map

r: g→ EndR(V )

is called a Lie algebra representation of g if

r([X,Y ]) = [r(X), r(Y )] for all X,Y ∈ g

Jacobi relation ⇔ ad[X,Y ] = [adX , adY ] for all X,Y ∈ g

This is equivalent to saying that

ad: g→ EndR(g) is a representation of Lie algebras



CARTAN-KILLING FORM

We define a symmetric bilinear form on g

Q(X,Y ) = Tr(adXadY ), the Cartan-Killing form

This has the nice invariance property that

Ad:G→ AutR(g, Q), i.e.

Q is invariant under the adjoint representation

A Lie group is called semisimple if the Cartan-Killing form is
non-degenerate

Equivalently, this says that ad: g→ EndR(g) is injective

A semisimple Lie algebra is simple if g is not a non-trivial
direct sum of two semisimple Lie algebras

In the simple case, the only invariant symmetric bilinear forms
are multiples of the Cartan-Killing form

Comment: Tr(AAt) > 0 for all non-zero real matrices A. So if
adX is represented by a symmetric matrix, Q(X,X) > 0 and
if by an antisymmetric matrix, Q(X,X) < 0



HODGE STRUCTURES ARISING
FROM REPRESENTATIONS

Given a representation

ρ:G→ AutR(V,Q), and a continuous group homomorphism

ψ:S1 → G,

we may ask when φ = ρ ◦ ψ gives a polarized Hodge structure
on V



A REMARKABLE TRICK

If φ = ρ ◦ ψ gives a polarized Hodge structure on V , by using
φ ⊗ φ∨, we get a polarized Hodge structure φ̃ on EndR(V ) ∼=
V ∨ ⊗R V

Now dρ: g→ EndR(V ), which is injective if the representation
is faithful, i.e. ρ is injective

Further, in case g is simple, dρ pulls back the Q on V to a
non-zero multiple of the Cartan-Killing form, by uniqueness of
the invariant forms on g

One checks dρ ◦ Ad = φ̃, and thus g is invariant under φ̃, and
thus is a direct sum of eigenspaces of φ̃

Since Ad preserves the Cartan-Killing form, and since the signs
(after possibly multiplying the whole thing by -1) are correct
to have a polarized Hodge structure, we get that Ad ◦ ψ gives
a polarized Hodge structure on g

Theorem: For a simple g, if any faithful representa-
tion of G has a polarized Hodge structure, it induces a
polarized Hodge structure on g for the adjoint repre-
sentation and the Cartan-Killing form



MAXIMAL COMPACT SUBGROUPS

For a semisimple Lie group G, a maximal compact sub-
group K is a maximal connected compact subgroup. These
are all conjugate.

Picking a maximal compact subgroup K, its Lie algebra k ⊆ g

Denote the orthogonal complement under the Cartan-Killing
form

p = k⊥, so

g = k⊕ p

It turns out that the Cartan-Killing form satisfies:

Q < 0 on k,

Q > 0 on p, and

Q(k,p) = 0 by construction

We may take

k = {X ∈ g | adX is antisymmetric}

p = {X ∈ g | adX is symmetric}



POLARIZED HODGE STRUCTURES ON g

When we unwind the conditions, for φ:S1 → G to give a po-
larized Hodge structure for the adjoint representation, we have
(for g simple) that there is an invariant symmetric from–the
Cartan-Killing form–and no invariant anti-symmetric form. So
we must have an even weight Hodge structure, and

Q = ±Cartan Killing form

Because dφ0(∂/∂θ) ∈ g is in the image of a circle, it must be
compact, but

dφ0(∂/∂θ) ∈ g0 by commutativity of S1, so in order for Q to
be positive-definite on g0, we must take

Q = −Cartan Killing form

Because the weight of the Hodge structure is even, the eigen-
values of Ad ◦ φ must all be even, and the condition to be
polarized is

k =
⊕

j≡0(mod 4) gj , and

p =
⊕

j≡2(mod 4) gj ,

i.e. the eigenvalues are all even, and the eigenvectors are con-
tained in k for eigenvalues divisible by 4 and in p otherwise



CARTAN SUBALGEBRAS AND RANK

g a semisimple real Lie algebra

A Cartan subalgebra h ⊂ g is a maximal abelian subalgebra
whose elements X all have adX diagonalizable over C

All Cartan subalgebras of g have the same dimension r, called
the rank of g (or of G)

A Cartan subgroup of G is a connected closed Lie subgroup
whose Lie algebra is a Cartan subalgebra

Every commuting set of diagonalizable elements of g is con-
tained in some Cartan subalgebra

In particular, if φ:S1 → G is a continuous group homomor-
phism, Φ = dφ0(∂/∂θ) ∈ g belongs to a Cartan subalgebra
h



CONDITION FOR g TO HAVE A
POLARIZED HODGE STRUCTURE

Let g, Φ ∈ h as in the previous slide

If Ad ◦ φ gives a polarized Hodge structure on g, then by the
earlier argument, we have

g0 ⊆ k

[Φ, X] = 0 for all X ∈ h, and exponentiating,

h ⊆ g0 ⊆ k

So: g has a Cartan subalgebra contained in k

Exponentiating,

G has a Cartan subgroup that is a compact real torus T ,

i.e. dim(T ) = rank(G), and

φ:S1 → T ⊂ G

This condition was first noticed by Carlos Simpson

This gives one direction of the following result:

THEOREM: The adjoint representation of a semisim-
ple Lie group G can be given a polarized Hodge struc-
ture ⇔ G contains a compact real torus which is a Car-
tan subgroup

As mentioned, if any representation of G can be given a po-
larized Hodge structure factoring through G, then the adjoint
representation of G can



MUMFORD-TATE GROUPS

In our new setting, Hodge classes if n = 2p are

Hdgp = V p,p ∩ Λ

If (V1,Λ1, Q1, φ1), (V2,Λ2, Q2, φ2) are polarized Hodge struc-
tures of weights n1, n2, then

(V1 ⊗R V2,Λ1 ⊗Z Λ2, Q1 ⊗Z Q2, φ1 ⊗R φ2) inherits a polarized
Hodge structure of weight n1 + n2

For the dual V ∨,

(V ∨,Λ∨, Q∨, φ∨) inherits a polarized Hodge structure

The Mumford-Tate group of a polarized Hodge structure is

G = {g ∈ AutR(V,Q) | g fixes all Hodge classes in⊗a
V ⊗

⊗b
V ∨ for all a, b}

The equations defining G inside GL(V,R) are polynomials with
coefficients in Z, i.e. it is a linear algebraic group defined
over Q

Comment: When G is a linear algebraic group over Q, its Lie
algebra g naturally gets the structure of a vector space over Q.
The lattice Λ that we need in order to have a Hodge structure
may be chosen compatible with this rational structure, and so
the Cartan-Killing form is integer-valued on Λ× Λ



WHICH CONNECTED REAL SEMISIMPLE LIE GROUPS
CAN BE MUMFORD-TATE GROUPS

THEOREM: (G-Griffiths-Kerr) A connected semisim-
ple real Lie group can be a Mumford-Tate group if
and only if G contains a compact real torus which is a
Cartan subgroup

One can use classification of simple Lie algebras to actually
make a list

Comment: There is a more refined question where we ask which
semisimple linear algebraic groups G defined over Q can be
Mumford-Tate groups. Our result is only about the induced
structure on G as a semisimple real Lie group.



THE PLOT THICKENS

AMAZING COINCIDENCE: In representation theory, a
connected real simple Lie group has discrete series representa-
tions if and only if it contains a compact real torus which is a
Cartan subgroup

There is a beautiful emerging interaction between Mumford-
Tate groups and representation theory



MUMFORD-TATE DOMAINS

Assume we have G connected linear algebraic group defined
over Q, T , φ:S1 → T giving a polarized Hodge structure to g

g = TeG has the structure of a vector space over Q lying inside
it, and this allows us to choose a lattice Λ

The centralizer in G of φ is

ZG(φ) = {g ∈ G | g ◦ φ ◦ g−1 = φ}

cg(φ) = g ◦ φ ◦ g−1:S1 → G also gives a polarized Hodge
structure on g for all g ∈ G

D = G/ZG(φ) is the space of all polarized Hodge structures on
g obtained by conjugates of φ

D is called a Mumford-Tate domain

cg(φ) has Mumford-Tate group contained in G

We let Γ = {g ∈ G | g(Λ) = Λ}, or some other discrete sub-
group like this

Γ\D is the arithmetic quotient of the Mumford-Tate domain
D



ROOTS

G, T as above, t the Lie algebra of T , T = t/L for a lattice
L ∼= Zr

Because the elements of t commute and are simultaneously
diagonalizable, the eigenvalues of t acting on g are 0, with
multiplicity r, and maps α:L→ Z

The set of α’s which occur with non-zero eigenspace is called
the roots of G, denoted Φ

It is a fact that these occur with multiplicity 1, i.e the mutual
eigenspace gα has dimension 1

One can see that bracketing with elements of t stabilizes k, p
and thus gα is contained in either k or p; these are called the
compact roots Φc and the non-compact roots Φnc

Specifying a continuous homomorphism φ:S1 → T is the same
as giving an element Lφ ∈ L

The eigenspaces for φ are

gj =
⊕
{α∈Φ|α(Lφ)=j} gα for j 6= 0, and

g0 = t⊕
⊕
{α∈Φ|α(Lφ)=0} gα



ADJOINT POLARIZED HODGE STRUCTURES
IN TERMS OF ROOTS

Using the same notation, let R be the subgroup of L∨ =
Hom(L,Z) generated by the roots

One can show that there is a group homomorphism

Ψ:R→ Z/4Z that satisfies

Ψ(α) = 0 for α ∈ Φc

Ψ(α) = 2 for α ∈ Φnc

We may think of Lφ ∈ L as giving a map Lφ:R→ Z

THEOREM: The condition that φ gives a polarized
Hodge structure on g is that Lφ ≡ Ψ(mod 4)

Comment: The reason Ψ is a group homomorphism is that

[k,k] ⊂ k, [k,p] ⊂ p, [p,p] ⊂ k

So sum of two compact roots is compact, sum of compact root
and non-compact root is non-compact, etc.



COMPLEXIFICATION OF G

If G is a linear algebraic group defined over Q, we may look
at the solutions over C rather than over R–this gives us the
complexification of G, denoted GC

The Lie algebra of GC is the complexification gC of g

The gα are contained in gC



HODGE FILTRATION AND PARABOLIC SUBGROUPS

Recall the Hodge filtration, which in our situation is

F jg =
⊕

j′≥j g2j′

Let Q = {g ∈ GC | Adg(F
j) = F j for all j}

Q turns out to be what is called a parabolic subgroup of GC

The Lie algebra q of Q is

q =
⊕

j≥0 gj = F 0g



WHICH φ’s GIVE THE SAME MT DOMAIN

In D∨ = GC/Q, at

x = g0Q, the isotropy group is

Qx = {g ∈ GC | gx = x} = g0Qg
−1
0

Now D = {g0Q | g0 ∈ G} ⊆ D∨

We get the same Mumford-Tate domain for different φ’s for a
given G if and only if the Q’s are conjugate by G



VARIATION OF HODGE STRUCTURE
FOR MUMFORD-TATE GROUPS

Let D∨ = GC/Q, the generalized flag variety

We have a natural inclusion

D ⊆ D∨

If x = Adg(φ), g ∈ G, then

TxD ∼= TxD
∨ ∼= gC/Adg(q)

The infinitesimal period relation says that the tangent space to
any geometric family takes F p to F p−1 in the earlier notation,
or that it takes gj to gj−2

This translates into the statement:

Mumford-Tate version of Griffiths transversality: The
possible tangent spaces to geometric families with Mumford-
Tate group contained in G at x is

Adg(
⊕

j≥−2 gj)/q ⊆ gC/q

which is isomorphic to

Adg(g
−2)

Note that different φ’s can give the same Mumford-Tate do-
main, but have a different infinitesimal period relation



MUMFORD-TATE DOMAINS GIVE
INTERESTING DIFFERENTIAL SYSTEMS

Note that [gj ,gj
′
] ⊆ gj+j

′

In particular, [g−2,g−2] ⊆ g−4

This implies via the Frobenius condition for integrability that
the tangent space to a geometric family at φ must be an abelian
subalgebra a ⊆ g−2

The differential system defined at each x = cg(φ) ∈ D, g ∈ G,
defined by

Adg(g
−2)

can have non-trivial brackets, and give a geometrically inter-
esting differential system



SPECIAL POINTS IN MUMFORD-TATE DOMAINS

A point x in a Mumford-Tate domain D = G/H will have its
Mumford-Tate group contained in G.

Equality need not hold. As we move in D, the Hodge structure
or one of its tensors may pick up additional Hodge classes

Additional Hodge classes may reduce the size of the Mumford-
Tate group



HODGE STRUCTURES OF CM TYPE

Hodge structures whose Mumford-Tate group is a torus are
said to be of CM type

CM stands for“complex multiplication”

Mumford-Tate domains have lots of points of CM type

Hodge structures of CM type are associated with number fields
of a certain type

For example, for elliptic curves

E = C/Λ, Λ = Z⊕ λZ

then H1(E) is of CM type if and only if Q(1, λ) ∼= Q(
√
−d) for

some d ∈ Z+



BEYOND SHIMURA VARIETIES

There is a class of Mumford-Tate domains arising mainly from
H1(X)’s, i.e. Hodge structures of weight one, where D is a
Hermitian symmetric domain

In this case, Γ\D has lots of sections of homogeneous line bun-
dles and an arithmetic structure

This is the case of Shimura varieties

Mostly, when we look at Hk(X) for k > 1, we are not in this
case

There are lots of reasons for looking at these higher Hk(X)’s.

They come up in studying algebraic cycles of codimension ≥ 2



THE NON-SHIMURA CASE

While Γ\D in the non-Shimura case tends not have sections of
homogeneous line bundles

Instead, what we have is lots of cohomology of homogeneous
line bundles on Γ\D

Very interesting work of Carayol for G = SU(2, 1) points the
way to getting an arithmetic structure on this cohomology

The Hodge structures of CM type are expected to play a role
in getting an arithmetic structure in general

There are interesting interactions with the Langlands program



FURTHER DIRECTIONS

There are a lot of interesting areas for further research:

(1) The closure of Mumford-Tate domains D in D∨ contains
various non-open G-orbits, studied by Kerr-Pearlstein and
also G-Griffiths

(2) The relationship of these orbits to compactifications of
Hodge structures of families of varieties, i.e. Limit Mixed
Hodge structures, is very rich, especially the relationship to
the Kato-Usui compactification

(3) The geometry of the G-orbits is subtle, for example their
Levi forms turn out to be interesting

(4) The arithmetic of the Γ\D remains mysterious and in-
triguing

(5) The interaction with representation theory is proving
interesting


