Distances in Hyperbolic Spaces and Negative Definite Kernels

Guyan Robertson

http://maths.newcastle.edu.au/~ guyan/

"... at the end of the $17^{\rm th}$ century, controversy raged between the followers of the physics of Descartes and of Newton. Descartes, with his whirlpools, hooked atoms, etc., explained everything and calculated nothing; Newton, with the law of gravitation, calculated everything and explained nothing."

René Thom, 1972.

1 Crofton Formula

[M.W. Crofton, Trans. Royal Soc. London, 158 (1868).]

 $\mathcal{L}=$ space of lines l in \mathbb{R}^2 ,

 $G = \text{group of rigid motions of } \mathbb{R}^2.$

 ${\cal L}$ has an essentially unique G-invariant measure μ :

$$d\mu = \frac{d\theta dp}{2}$$

The length of a rectifiable curve C is

$$\int n(l)d\mu(l)$$

where $n(l) = \#(l \cap C)$.

Corollary.

$$d(x,y) = \mu\{l : l \cap [x,y] \neq \emptyset\}$$

2 Hyperbolic Spaces: $H_{\mathbb{F}}^n$, $\mathbb{F} = \mathbb{R}$, \mathbb{C} , \mathbb{H} .

On \mathbb{F}^{n+1} define

$$\langle x, y \rangle = -\overline{x_0}y_0 + \sum_{i=1}^n \overline{x_i}y_i$$
$$H_{\mathbb{F}}^n = \left\{ x \in \mathbb{F}^{n+1} : \langle x, x \rangle < 0 \right\} / \mathbb{F}^{\times}$$

Abuse notation: write x for [x].

Distance in $H^n_{\mathbb{F}}$:

$$\cosh d(x,y) = \frac{|\langle x,y\rangle|}{(\langle x,x\rangle\langle y,y\rangle)^{\frac{1}{2}}}$$

Groups acting isometrically:

$$G = O(1, n); U(1, n); \operatorname{Sp}(1, n).$$

Important Property:

 $H^n_{\mathbb{F}}$ is 2-point homogeneous.

That is, if $d(x,y) = d(x^{\prime},y^{\prime})$ then

$$\exists g \in G$$
 such that $gx = x', gy = y'$.

Other examples of 2-point homogeneous spaces:

 \mathbb{R}^m , spheres, projective spaces.

3 Real Hyperbolic Space

There is a natural embedding

$$H_{\mathbb{R}}^{n-1} \hookrightarrow H_{\mathbb{R}}^{n}$$

$$(x_0, \dots, x_{n-1}) \mapsto (x_0, \dots, x_{n-1}, 0)$$

A **hyperplane** is a G-translate of $H_{\mathbb{R}}^{n-1}$ in $H_{\mathbb{R}}^n$. (\equiv totally geodesic submanifold of codimension 1)

$$G_0:=$$
 stabilizer of $H^{n-1}_{\mathbb{R}}$
$$=O(1,n-1)\times O(1)\,.$$
 $\mathcal{S}:=$ space of hyperplanes $\cong G/G_0$.

G, G_0 are unimodular locally compact groups.

 \therefore \exists G-invariant measure $\mu_{\mathcal{S}}$ on \mathcal{S} .

Proposition. There is a Crofton formula for distance in $H^n_{\mathbb{R}}: \exists k>0$ such that

$$\mu_{\mathcal{S}}\{S \in \mathcal{S} : S \cap [x, y] \neq \emptyset\} = kd(x, y) \tag{1}$$

Proof Idea.

By 2-point homogeneity, and invariance of the measure $\mu_{\mathcal{S}}$,

 y_1 y_2 y_2 y_3 then the set of hyperplanes

if $d(x_1,y_1)=d(x_2,y_2)$ then the set of hyperplanes meeting $[x_1,y_1]$ has the same measure as the set of hyperplanes meeting $[x_2,y_2]$.

Taking limits gives (1).

Easy to see $k \neq 0$. Why is $k < \infty$?

Because

$$\{S \in \mathcal{S} : S \cap [x, y] \neq \emptyset\}$$

is compact.

Reason for this: G_0 acts transitively on $H_{\mathbb{R}}^{n-1}$.

4 Half-Spaces

A half-space is a G-translate of the half-space

$$\mathfrak{H}_0 = \{(x_0, \dots, x_n) \in H_{\mathbb{R}}^n : x_n > 0\}$$

 $H_0 := \text{stabilizer of } \mathfrak{H}_0 \text{ in } G$ $\cong O(1, n-1) \text{ is unimodular.}$

 \therefore \exists G-invariant measure $\mu_{\mathcal{H}}$ on the space $\mathcal{H}\cong G/H_0$ of half-spaces.

There is a natural double cover

$$\mathfrak{H} \longrightarrow \partial \mathfrak{H}$$

$$\mathcal{H} \longrightarrow \mathcal{S}$$

{half-spaces} {hyperplanes}

Define $\Sigma_x = \{ \mathfrak{H} \in \mathcal{H} : x \in \mathfrak{H} \}$.

Crofton's formula (normalized)

gives

$$\mu_{\mathcal{H}}\left(\Sigma_x \triangle \Sigma_y\right) = d(x, y)$$

Consequence:

$$\sqrt{d}$$
 on $H_{\mathbb{R}}^n$ is a Hilbert space distance. (2)

Reason:

If $x \in H^n_{\mathbb{R}}$, let

$$\chi_x(\mathfrak{H}) = \begin{cases} 1 & \mathfrak{H} \in \Sigma_x \\ 0 & \mathfrak{H} \notin \Sigma_x \end{cases}$$

Then

$$v_x := \chi_x - \chi_{x_0} \in \mathsf{L}^2(\mathcal{H}, \mu_{\mathcal{H}}) \,,$$

where x_0 is fixed,

and

$$\mu_{\mathcal{H}}\left(\Sigma_x \triangle \Sigma_y\right) = \|v_x - v_y\|_{L^2}^2.$$

J. Farault, K. Harzallah (1974) gave a different, analytic proof of (2). They also proved the same result for $H^n_{\mathbb{C}}$.

P. Julg (1998 Bourbaki Seminar) gave yet another proof.

5 Negative Definite Kernels

Let X be a set.

 $f: X \times X \to \mathbb{R}$ is a negative definite kernel if

$$f(x,y) = f(y,x), f(x,x) = 0,$$

and, for any finite set of points $x_j \in X$,

$$\sum \alpha_i \alpha_j f(x_i, x_j) \le 0 \qquad \text{if} \quad \begin{cases} \alpha_j \in \mathbb{R}, \\ \sum \alpha_j = 0. \end{cases}$$

Example. H a real Hilbert space, $v_x \in H$, $x \in X$.

$$f(x,y) = ||v_x - v_y||^2$$
 is a n.d.k.

Reason:

$$\sum \alpha_i \alpha_j f(x_i, x_j) = -2 \left\| \sum_i \alpha_i v_{x_i} \right\|^2$$

if

$$\sum \alpha_i = 0.$$
 [CHECK]

All n.d.k.'s arise in this way!

Theorem. [I.J. Schoenberg, 1938] A metric space (X, d) embeds in a Hilbert space $\Leftrightarrow d^2$ is a n.d.k.

Consequence : d on $H^n_{\mathbb{R}}$ is a n.d.k.

Can my proof work for $H_{\mathbb{C}}^n$?

Problem: Show d(x,y) is a n.d.k. by the $method\ of\ half-spaces$? [True result, by Farault-Harzallah.]

Obvious candidates for half-spaces are

- 1. EQUIDISTANT HALF-SPACES $\{x: d(x,a) \leq d(x,b)\}$
- 2. HOROBALLS (balls centred at ∞)

These do not work : $\mu(\Sigma_x \triangle \Sigma_y) = \infty$.

6 Hypermetrics

Return to what we proved for $H^n_{\mathbb{R}}$.

Here is an abstract necessary condition for a distance to arise from a measure on a space of "half-spaces".

Let X be a set, and $d: X \times X \to \mathbb{R}_+$.

Proposition.[J. B. Kelly, 1970] Suppose there is a measure space (Ω, μ) containing measurable sets Σ_x , $x \in X$, such that $d(x,y) = \mu(\Sigma_x \triangle \Sigma_y)$. Then d is **hypermetric**.

That is,

$$\sum t_i t_j d(x_i, x_j) \le 0,$$

if $x_1, \ldots, x_k \in X$, $t_1, \ldots, t_k \in \mathbb{Z}$ and $\sum t_j = 1$.

Proof.

$$d(x,y) = \int_{\Omega} \left| \chi_{\Sigma_x}(\omega) - \chi_{\Sigma_y}(\omega) \right| d\mu(\omega).$$

Therefore

$$\sum t_i t_j d(x_i, x_j) = \int_{\Omega} \sum_{i,j} t_i t_j \left| \chi_{\Sigma_{x_i}}(\omega) - \chi_{\Sigma_{x_j}}(\omega) \right| d\mu(\omega).$$

We show the integrand is ≤ 0 .

Fix $\omega \in \Omega$. Define $\delta: X \to \{0,1\}$ by

$$\delta(x) = \chi_{\Sigma_x}(\omega) .$$

$$\sum t_i t_j |\delta(x_i) - \delta(x_j)| = 2 \left(\sum_{\delta(x_i)=1} t_i\right) \left(\sum_{\delta(x_j)=0} t_j\right)$$

$$= 2PQ \quad \text{where } \begin{cases} P, Q \in \mathbb{Z}, \\ P + Q = 1 \end{cases}$$

$$\leq 0.$$

What does the hypermetric property mean?

Let

$$\{x_1, \dots, x_{2n+1}\} = \{p_1, \dots, p_n\} \cup \{q_1, \dots, q_{n+1}\}\$$

$$t_1 = \dots = t_n = -1; \qquad t_{n+1} = \dots = t_{2n+1} = +1.$$

$$\implies \sum (-1)^2 d(p_i, p_j) + \sum (1)^2 d(q_i, q_j)$$

$$+ \sum (-1)(1) d(p_i, q_j) \le 0$$

$$\implies \sum d(p_i, p_j) + \sum d(q_i, q_j) \le \sum d(p_i, q_j)$$

 $n=1 \Rightarrow$ triangle inequality.

$$d(x,y) = \mu(\Sigma_x \triangle \Sigma_y) \Rightarrow d$$
 hypermetric $\Rightarrow d$ negative definite.

Is d on $H^n_{\mathbb{C}}$ hypermetric?

Computations with $\sim 10^4$ points seem to show the question is finely balanced.

7 Quaternionic Hyperbolic Space

 $G = \mathrm{Sp}(1,n)$ acts isometrically on $H^n_{\mathbb{H}}$.

B. Kostant (1969) proved a "rigidity" result:

G has **Kazhdan's property** (**T**). That is,

every negative definite $f:G \to \mathbb{R}$ is bounded.

 $\left[f \ negative \ definite \ \mathsf{means} \ (g,h) \mapsto f(g^{-1}h) \ \mathsf{is} \ \mathsf{n.d.k.}\right]$

Now $g \mapsto d(gx_0, x_0)$ is unbounded. Therefore

d(x,y) is **not** negative definite.

Direct Proof:

$$\{p_1, \dots, p_{12}\} = \{ (3, \pm 2 \pm 2\varepsilon, 0) ; \varepsilon = i, j, k \}$$

 $\{p_{13}, \dots, p_{24}\} = \{ (3, 0, \pm 2 \pm 2\varepsilon) ; \varepsilon = i, j, k \}$
 $t_1 = \dots = t_{12} = -1 ;$
 $t_{13} = \dots = t_{24} = +1$

$$\sum_{i} t_i t_j d(p_i, p_j) = 417.031 - 415.767$$
> 0.

To show that a group G does **not** have property (T), find a geometrical object X on which G acts, and use the method of 1/2-spaces to construct an unbounded G-invariant negative definite kernel.

E.g. W an infinite Coxeter group.

 $X = \mathsf{Coxeter} \; \mathsf{complex}.$

There is a "Crofton formula" for distance between maximal simplices.

$$d(C, C') = 6$$

d(C,C') = no of walls separating C and C'.

 $\Longrightarrow W$ does not have property (T), if W is infinite.

This method seems to be almost universally applicable.

Does it really fail for U(1,n)?

2-Point Homogeneous Riemannian Manifolds

	d n.d.k.?	d hypermetric?
\mathbb{R}^n	Y	Υ
S^n	Y	Y
$H^n_{\mathbb{R}}$	Y	Y
$H^n_{\mathbb C}$	Y	?
$H^n_{\mathbb{H}}$	N	N
$H^2_{\mathbb{O}}$	N	N
$P_{\mathbb{F}}^n$	N ^a	N

a: Fails for 6 points

The projective plane $P_{\mathbb{R}}^2 = \mathbb{R}^3 / \mathbb{R}^{\times}$

Distance:
$$\cos d(x,y) = \frac{|(x\cdot y)|}{((x\cdot x)(y\cdot y))^{\frac{1}{2}}}$$
.

To show d is not n.d.k., choose points so that

$$\sum d(p_i, p_j) + \sum d(q_i, q_j) > \sum d(p_i, q_j).$$

Let

$$p_1 = (1,0,1), p_2 = (1,0,-1), p_3 = (0,1,0),$$

and

$$q_1 = (0,1,1), q_2 = (0,1,-1), q_3 = (1,0,0).$$

Then

$$d(p_i, p_j) = d(q_i, q_j) = \pi/2$$
 (the diameter of $P_{\mathbb{R}}^2$).

$$\sum d(p_i, p_j) + \sum d(q_i, q_j) = 3\pi/2 + 3\pi/2 = 3\pi$$

and

$$\sum d(p_i, q_j) = 4\pi/3 + 4\pi/4 + \pi/2 = 17\pi/6$$

NOTE. There is a Crofton formula for geodesic distance d on the space $P_{\mathbb{R}}^n$. The method of half-spaces does not work: a hyperplane does not have two sides.