Operator algebras, boundaries of buildings and K-theory

Guyan Robertson

http://maths.newcastle.edu.au/~ guyan/

Spaces that arise in analysis are often pathological and cannot be studied by classical geometric methods. Consider instead an associated **algebraic** object.

For example, the topology of a "good" space S is completely determined by the commutative algebra

$$C(S) = \{ f : S \to \mathbb{C} \mid f \text{ is continuous} \}.$$

If S is a "bad" space, replace C(S) by a **non-commutative** algebra.

Example: A finite connected graph X, with all vertices of degree > 2. The universal covering tree Δ has boundary $\partial \Delta$.

Let $\Gamma = \pi(X)$, the fundamental group of X. Γ is a free group which acts freely on Δ and

$$\Gamma \backslash \Delta = X$$

 Γ also acts on $\partial \Delta$, but this action is "bad": $\Gamma \backslash \partial \Delta$ is not Hausdorff.

 Γ acts on $C(\partial \Delta)$:

$$\gamma(f)(\omega) = f(\gamma^{-1}\omega)$$

Study the "bad" action by forming the **crossed product** C^* -algebra:

$$\mathcal{A}(\Gamma) = C(\partial \Delta) \rtimes \Gamma$$
$$= C^* \langle \Gamma \cup C(\partial \Delta) ; \gamma(f) = \gamma f \gamma^{-1} \rangle$$

Here

$$C(\partial \Delta) \subset \mathcal{A}(\Gamma)$$
 an abelian subalgebra $\Gamma \subset \mathcal{A}(\Gamma)$ a group of unitaries

 $\mathcal{A}(\Gamma)$ is generated (as a C^* -algebra) by finite sums

$$\sum f_i \gamma_i, \qquad f_i \in C(\partial \Delta), \ \gamma_i \in \Gamma$$

product: $f_1\gamma_1 \cdot f_2\gamma_2 = f_1\gamma_1(f_2)\gamma_1\gamma_2$

involution: $(f\gamma)^* = \gamma^{-1}(f^*)\gamma^{-1}$

What about "good" actions?

Example: $X = \Gamma \setminus \Delta$.

Answer: $C_0(\Delta) \rtimes \Gamma \approx C(X)$.

Let $E = \{ \text{oriented edges of } \Delta \}$. (Each geometric edge has two orientations.)

If $e \in E$, define a clopen subset $\Omega(e)$ of $\partial \Delta$

The indicator function $p_e \in C(\partial \Delta) \subset \mathcal{A}(\Gamma)$.

If $e \in E$ and $d = \gamma e$, where $\gamma \in \Gamma$, then define a **partial isometry**

$$s_{d,e} = \gamma p_e$$
.

$$s_{d,e}^* s_{d,e} = p_e$$
 initial projection
$$s_{d,e} s_{d,e}^* = \gamma p_e \gamma^{-1}$$

$$= \gamma(p_e)$$

$$= p_d$$
 final projection

Therefore $p_d \sim p_e$

(Murray-von Neumann equivalence)

Facts:

- (1) $\mathcal{A}(\Gamma)$ is simple, purely infinite and generated by the operators $s_{d,e}$, where $d \in \Gamma e$. A Cuntz-Krieger algebra.
- (2) $\mathcal{A}(\Gamma)$ is classified by the abelian group $K_0(\mathcal{A}(\Gamma))$ and [1], where

$$K_0(\mathcal{A}) = \{[p] : p \text{ is a nonzero idempotent in } \mathcal{A}\}$$

addition :
$$[p] + [q] = [p + q]$$
, if $pq = 0$,

zero element : [p-p'], where $p \sim p' < p$.

If $e \in E$, $[p_e] \in K_0(\mathcal{A}(\Gamma))$ depends only on Γe . Let $A := \{\Gamma e : e \in E\}$, (a finite alphabet). $A \approx \{\text{directed edges of } X\}$

Example:

 $A = \{a, \overline{a}, b, \overline{b}, c, \overline{c}\}$

For $a = \Gamma e \in A$, let $[a] := [p_e] \in K_0(\mathcal{A}(\Gamma))$.

These are **all** the generators for $K_0(\mathcal{A}(\Gamma))$.

The idempotents p_e satisfy

$$p_e = \sum_{\substack{e' \in E \\ e \to e'}} p_{e'}$$

Define 0-1 matrix M, for a, $b \in A$ by

$$M(a,b) = 1 \Longleftrightarrow$$

Relations:

$$[a] = \sum_{b \in A} M(a,b)[b].$$

These are the **only** relations . . .

Theorem.

$$K_0(\mathcal{A}(\Gamma)) = \left\langle A \mid a = \sum_{b \in A} M(a, b)b \right\rangle.$$

This is easily computed from the graph X:

Example:

generators: $\{a, \overline{a}, b, \overline{b}, c, \overline{c}\}$

relations:

$$a = \overline{b} + \overline{c}, \quad b = \overline{c} + \overline{a}, \quad c = \overline{a} + \overline{b}$$
 $\overline{a} = b + c, \quad \overline{b} = c + a, \quad \overline{c} = a + b$

Result:

 $K_0(\mathcal{A}(\Gamma)) = \mathbb{Z}^r \oplus \mathbb{Z}/(r-1)\mathbb{Z}$, where r is the rank of Γ . The class $[1] \in K_0(\mathcal{A}(\Gamma))$ has order

$$r-1=-\chi(X)$$
 (Euler characteristic)

Remark: It follows that $A(\Gamma)$ depends only on Γ .

Special case:

Let p be prime and Γ a torsion free lattice in

$$G = \mathsf{PGL}_2(\mathbb{Q}_p)$$
.

G acts on Δ (homogeneous tree of degree p+1),

 $X = \Gamma \backslash \Delta$ is a finite graph, $\Gamma = \pi(X)$ and

$$\chi(X) = -\frac{(p-1)}{2} \cdot \#\{\text{vertices of } X\}$$

$$\mathsf{PGL}_3(\mathbb{Q}_p)$$

 $G = \operatorname{PGL}_3(\mathbb{Q}_p)$ acts on its **building** of type \widetilde{A}_2 , which is a topologically contractible 2-dimensional complex Δ .

 Δ is a union of **apartments**: flat subcomplexes isomorphic to a tessellation of \mathbb{R}^2 by equilateral triangles.

The boundary $\partial \Delta$ is a compact totally disconnected space whose points correspond to sectors in Δ based at a fixed vertex v.

The boundary algebra $\mathcal{A}(\Gamma)$.

If Γ is a torsion free lattice in $\operatorname{PGL}_3(\mathbb{Q}_p)$ then Γ acts freely on Δ , the universal cover of the 2-dimensional complex $X = \Gamma \backslash \Delta$.

X is determined by Γ , by Strong Rigidity.

 Γ acts on Δ , and on $\partial \Delta$. Define

$$\mathcal{A}(\Gamma) := C(\partial \Delta) \rtimes \Gamma.$$

[Depends only on Γ .]

The algebras $\mathcal{A}(\Gamma) = C(\partial \Delta) \rtimes \Gamma$ are examples of **higher rank Cuntz-Krieger algebras** whose structure theory has been developed by G. Robertson and T. Steger (1998-2001).

Given a basepointed tile $t = \diamondsuit$ in Δ ,

let Ω_t be the set of all $\omega \in \partial \Delta$ such that

Let

 $p_t = \text{char. function of } \Omega_t \in C(\partial \Delta) \subseteq \mathcal{A}(\Gamma).$

Then

$$\gamma p_t \gamma^{-1} = p_{\gamma t}$$

SO

 $[p_t] \in K_0$ depends only on Γt .

Let $A:=\{\Gamma t: t \text{ a tile}\},$ (a finite alphabet). Define 0-1 matrices M_1 , M_2 , for $a, b \in A$ by

For $a = \Gamma t \in A$, let $[a] := [p_t] \in K_0(\mathcal{A}(\Gamma))$.

Relations:

•
$$[a] = \sum_{b \in A} M_1(a, b)[b];$$

•
$$[a] = \sum_{b \in A} M_2(a, b)[b]$$
.

These are the **only** relations . . .

$$[a] = \sum_{b \in A} M_1(a, b)[b];$$

Let

$$C = \left\langle A \mid a = \sum_{b \in A} M_j(a, b)b, j = 1, 2 \right\rangle.$$

Theorem. [G. Robertson, T. Steger, 2001] $K_0(\mathcal{A}(\Gamma)) = C \oplus \mathbb{Z}^{\operatorname{rank}(C)}.$

Note: There are generators of K_0 **not** of the form $[a] = [p_t]$.

Theorem. m.[1] = 0 in $K_0(\mathcal{A}(\Gamma))$, where $m = \gcd(3, p-1) \cdot \frac{(p^2-1)}{3} \cdot \#\{\text{vertices of } \Gamma \setminus \Delta\}$

Strong numerical evidence suggests that the order of [1] is actually :

$$\frac{(p-1)}{\gcd(3,p-1)} \cdot \#\{\text{vertices of } \Gamma \setminus \Delta\}$$

Note:

$$\chi(\Gamma \backslash \Delta) = \frac{(p-1)(p^2-1)}{3} \cdot \#\{\text{vertices of } \Gamma \backslash \Delta\}.$$

Example: The simplest possible Γ has generators x_0, x_1, \ldots, x_6 , and relations

$$\begin{cases} x_0x_1x_4, x_0x_2x_1, x_0x_4x_2, x_1x_5x_5, \\ x_2x_3x_3, x_3x_5x_6, x_4x_6x_6. \end{cases}$$

- Γ is a torsion free lattice in $PGL_3(\mathbb{Q}_2)$.
- Γ acts transitively on vertices of Δ .

$$K_0(\mathcal{A}(\Gamma)) = (\mathbb{Z}/2\mathbb{Z})^2 \oplus \mathbb{Z}/3\mathbb{Z},$$
$$[1] = 0$$

 \exists exactly 3 such $\Gamma < PGL_3(\mathbb{Q}_2)$. (Cartwright, Mantero, Steger, Zappa, 1993)

3 different groups $K_0(\mathcal{A}(\Gamma))$:

$$\mathbb{Z}/3\mathbb{Z}$$
 $(\mathbb{Z}/2\mathbb{Z})^2 \oplus \mathbb{Z}/3\mathbb{Z}$ $(\mathbb{Z}/2\mathbb{Z})^4 \oplus \mathbb{Z}/3\mathbb{Z}$

Other affine buildings: the boundary algebras $\mathcal{A}(\Gamma)$ are again simple and purely infinite, but $K_0(\mathcal{A}(\Gamma))$ is harder to compute. However

Theorem. Let G be a semisimple Chevalley group over \mathbb{Q}_p . Let Γ be a lattice in G. Then [1] has finite order in $K_0(\mathcal{A}(\Gamma))$.

If G is not type \widetilde{E}_8 or \widetilde{F}_4 , and Γ is torsion free, then

order of [1] $< \#\{\text{faces of } \Gamma \setminus \Delta\}.$

Continuous Analogue: $\Gamma < PSL_2(\mathbb{R})$, the fundamental group of a Riemann surface M.

Γ acts on the Poincaré upper half-plane

$$\mathfrak{H}=\{z\in\mathbb{C}:\Im z>0\}.$$
 and on $\partial\mathfrak{H}=\mathbb{R}\cup\{\infty\}=\mathbb{S}^1.$ Let

$$\mathcal{A}(\Gamma) = C(\mathbb{S}^1) \rtimes \Gamma.$$

Fact: The class $[1] \in K_0(\mathcal{A}(\Gamma))$ has order $-\chi(M)$. (A. Connes; T. Natsume)

Question: Is [1] always torsion for geometric boundary algebras?

Example: $G = \mathrm{PSL}_2(\mathbb{C})$ acts on hyperbolic 3-space and its boundary S^2 .

If $\Gamma < G$ is a countable discrete subgroup then [1] is **not** torsion in $K_0(\mathcal{A}(\Gamma))$ (A. Connes).

APPENDIX

Proof of tree case: $-\chi(\Gamma).[1] = 0$ in $K_0(\mathcal{A}(\Gamma).$

$$\tilde{E} = \tilde{E}_{+} \sqcup \tilde{E}_{-} = \{ \text{oriented edges of } \Delta \}$$

$$\widetilde{V} = \{ \text{vertices of } \Delta \}$$

E, V: oriented edges, vertices of $X = \Gamma \backslash \Delta$

If $\tilde{e} \in \tilde{E}$, $\Omega(\tilde{e})$ is a clopen subset of $\partial \Delta$:

The indicator function $p_{\tilde{e}} \in C(\partial \Delta) \subset \mathcal{A}(\Gamma)$.

 $[p_{\tilde{e}}] \in K_0(\mathcal{A}(\Gamma))$ depends only on $e = \Gamma \tilde{e} \in E$.

Reason: $p_{\gamma \tilde{e}} = \gamma \cdot p_{\tilde{e}} = \gamma p_{\tilde{e}} \gamma^{-1}$.

Therefore write $[e] = [p_{\tilde{e}}] \in K_0(\mathcal{A}(\Gamma))$.

The idempotents $p_{\tilde{e}}$ satisfy the following relations

$$\sum_{\substack{\tilde{e} \in \tilde{E} \\ o(\tilde{e}) = \tilde{v}}} p_{\tilde{e}} = 1, \quad \text{for } \tilde{v} \in \tilde{V}; \quad \text{(1a)}$$

$$p_{\tilde{e}} + p_{\overline{\tilde{e}}} = 1, \quad \text{for } \tilde{e} \in \tilde{E}. \quad \text{(1b)}$$

$$p_{\tilde{e}} + p_{\overline{\tilde{e}}} = 1, \quad \text{for } \tilde{e} \in \tilde{E}. \quad (1b)$$

$$\Omega(\overline{ ilde{e}})$$
 $\widetilde{ ilde{e}}$ $\Omega(ilde{e})$

The relations (1) project to the following relations in $K_0(\mathcal{A}(\Gamma))$.

$$\sum_{\substack{e \in E \\ o(e) = v}} [e] = [1], \quad \text{for } v \in V; \quad \text{(2a)}$$
$$[e] + [\overline{e}] = [1], \quad \text{for } e \in E. \quad \text{(2b)}$$

Since the map $e \mapsto o(e) : E \to V$ is surjective, the relations (2) imply that

$$n_{V}[1] = \sum_{v \in V} \sum_{\substack{e \in E \\ o(e) = v}} [e] = \sum_{e \in E} [e]$$

$$= \sum_{e \in E_{+}} ([e] + [\overline{e}]) = \sum_{e \in E_{+}} [1]$$

$$= n_{E_{+}}[1].$$

Therefore $(n_V - n_{E_+}).[1] = 0.$

i.e
$$\chi(X).[1] = 0.$$