Analysis on Covering Spaces A Survey Toshikazu Sunada

Department of Mathematics, Meiji University

The purpose of this lecture

To review ideas, methods and results in analysis on covering spaces, especially analysis on covering graphs over finite graphs.

1) Quick review of covering spaces
2) Twisted Laplacians and Kazhdan distance
3) Analysis on Cayley graphs (cogrowth, Ramanujan graphs, zeta functions of finitely generated groups)
4) Abel-Jacobi maps in graph theory
5) Large deviation asymptotics of heat kernels on periodic manifolds

1. Quick Review of Covering Spaces

Covering Spaces

As spaces, we mainly treat manifolds and 1-dimensional cell complexes (graphs).

Roughly speaking, a covering map is a surjective map of spaces $\pi: X \longrightarrow X_{0}$ which preserves the local structure (topology, Riemannian metric, adjacency relation (and weights) of graphs).
\boldsymbol{X} is said to be a covering space over \boldsymbol{X}_{0}.
In this lecture, the base space X_{0} is supposed to be compact (thus in the cese of graphs, \boldsymbol{X}_{0} is supposed to be a finite graphs).

A schematic image of a covering map

Unique lifting of paths

Regular covering spaces

If a group Γ acts on a space freely and discontinuously, then the canonical map $\pi: X \longrightarrow \Gamma \backslash X=X_{0}$ is a covering map.

A covering map (space) obtained in this way is called a regular covering map (space) with covering transformation group Γ.

A regular covering space with abelian covering transformation group is called an abelian covering space.

Universal covering

Among all covering spaces over a fixed space \boldsymbol{X}_{0}, there is a "maximal one", which is called the universal covering map and is characterized by simply connectedness.

The universal covering space over X_{0} is a regular covering space whose covering transfromation group is the fundamental group $\pi_{1}\left(\boldsymbol{X}_{0}\right)$.

As a set, $\pi_{1}\left(X_{0}\right)$ is the set of homotopy classes of loops in X_{0} with a fixed base point.

Galois Theory for covering maps

A covering space \boldsymbol{X} over \boldsymbol{X}_{0}

A subgroup Γ of $\pi_{1}\left(X_{0}\right)$
The correspondence is given as

$$
\begin{aligned}
& X \Longrightarrow \Gamma=\pi_{1}(X) \\
& \Gamma \Longrightarrow X=\Gamma \backslash \widehat{X}_{0},
\end{aligned}
$$

where \widehat{X}_{0} is the universal covering space over \boldsymbol{X}_{0}.
A regular covering space \boldsymbol{X} over \boldsymbol{X}_{0}
\Longleftrightarrow
A normal subgroup Γ of $\pi_{1}\left(X_{0}\right)$.
This being the case, the factor group $G=\Gamma \backslash \pi_{1}\left(X_{0}\right)$ is the covering transformation group of $X \longrightarrow X_{0}$.

Abelian covering maps

Let $\left[\pi_{1}\left(X_{0}\right), \pi_{1}\left(X_{0}\right)\right]$ be the commutator group (the normal subgroup of $\pi_{1}\left(X_{0}\right)$ generated by elements of the form $\left.[a, b]=a b a^{-1} b^{-1}\right)$,
Note $H_{1}\left(X_{0}, Z\right)=\left[\pi_{1}\left(X_{0}\right), \pi_{1}\left(X_{0}\right)\right] \backslash \pi_{1}\left(X_{0}\right)$, the $1^{\text {st }}$ homology group of X_{0} (Hurewitz).
Thus $X=\left[\pi_{1}\left(X_{0}\right), \pi_{1}\left(X_{0}\right)\right] \backslash \widehat{X}_{0}$ is the covering space whose covering transformation group is $H_{1}\left(X_{0}, \mathrm{Z}\right)$.
This X is "maximal among all abelian covering spaces over \boldsymbol{X}_{0}.
(Use the fact that $\Gamma \backslash \pi_{1}\left(X_{0}\right)$ is abelian if and only if Γ contains the commutator group $\left[\pi_{1}\left(X_{0}\right), \pi_{1}\left(X_{0}\right)\right]$).

An abelian covering space \boldsymbol{X} over \boldsymbol{X}_{0} \Longleftrightarrow
A subgroup Γ of $\pi_{1}\left(X_{0}\right)$ with $\left[\pi_{1}\left(X_{0}\right), \pi_{1}\left(X_{0}\right)\right] \subset \Gamma$ \Longleftrightarrow
A subgroup H of $H_{1}\left(X_{0}, \mathbb{Z}\right)$

\Longleftrightarrow

A surjective homomorphism $H_{1}\left(X_{0}, \mathbb{Z}\right) \longrightarrow G$

Example of Universal Covering Spaces

Since a simply connected graph is tree, the universal covering graph is a tree.

Abelian Covering Spaces

I)

This is an abelian covering surface over a closed surface of genus two.
II)

Hexagonal lattice

In general, a covering graph over a finite graph with free abelian covering transformation group is called a crystal lattice or topological crystal.

Triangular lattice

Kagome lattice

Kagome lattice

2. Quick Review of Graphs

Grahps -Terminology-

A graph \boldsymbol{X} is an abstract figure consisting of two kind of objects; say vertices and edges.
Denote as $\boldsymbol{X}=(\boldsymbol{V}, \boldsymbol{E})$, and "realize" as

V

The set of vertices
\boldsymbol{E}

The set of all oriented edges
$o(e)=$ the origin of $e, \quad t(e)=$ the terminus of e.

$\left|\boldsymbol{E}_{x}\right|=\operatorname{deg} \boldsymbol{x}$, the degree of the vertex \boldsymbol{x}

- $\left|\boldsymbol{E}_{\boldsymbol{x}}\right|$ is called the degree of \boldsymbol{x}, and written as $\operatorname{deg} x$.
\circ If $\operatorname{deg} x \equiv k$, the graph X is said to be a regular graph of degree k.
Convention : we write $q+1$ for the degree of a regular graph.
\circ A subset $\boldsymbol{E}^{o} \subset \boldsymbol{E}$ is said to be an orientation if $\boldsymbol{E}^{o} \cup \overline{\boldsymbol{E}^{\boldsymbol{o}}}=$ $\boldsymbol{E}, \boldsymbol{E}^{o} \cap \overline{\boldsymbol{E}^{o}}=\emptyset$.

Graph-theoretic definition of covering graphs

Let $\boldsymbol{X}=(\boldsymbol{V}, \boldsymbol{E})$, and $\boldsymbol{X}_{0}=\left(\boldsymbol{V}_{0}, \boldsymbol{E}_{0}\right)$. A pair of maps (φ, ψ) is said to be a covering map if

1. $\varphi: V \longrightarrow V_{0}$ and $\psi: E \longrightarrow \boldsymbol{E}_{0}$ are surjective,
2. $o(\psi(e))=\varphi(o(e)), \quad t(\psi(e))=\varphi(t(e))$,
3. $\psi(\bar{e})=\overline{\psi(e)}$,
4. for every $x \in V$, the restriction $\psi: E_{x} \longrightarrow E_{0, \varphi(x)}$ is a bijection.

Cayley (Serre) graphs

$G:$ a group,
$i: A \longrightarrow G:$ a map of a finite set A into G such that $i(A)$ generates G. We put $q=2|A|-1$.
$\bar{A}=\{\bar{a} ; a \in A\}:$ a disjoint copy of A.
A word with letters in A means either void (denoted by $\emptyset)$ or a finite sequence $w=\left(b_{1}, \ldots, b_{n}\right)$ with $b_{i} \in A \cup \bar{A}$.

The length n of a word $w=\left(b_{1}, \ldots, b_{n}\right)$ is denoted by $|\boldsymbol{w}|(|\emptyset|=0)$.

A word $w=\left(b_{1}, \ldots, b_{n}\right)$ is said to be reduced if $\overline{b_{i+1}} \neq$ $b_{i}(i=1, \ldots, n-1)$, where $\overline{\bar{a}}$ is understood to be a. Denote by $g(w) \in G$ the product $i\left(b_{1}\right) \cdots i\left(b_{n}\right)(g(\emptyset)=1)$, where $i(\bar{a})$ is understood to be $i(a)^{-1}$.

Given a $(\boldsymbol{G}, \boldsymbol{i}, \boldsymbol{A})$, the Cayley graph $\boldsymbol{X}=\boldsymbol{X}(\boldsymbol{G}, \boldsymbol{A})$ is constructed in the following way.

$$
\begin{aligned}
& V=G, \quad E^{o}=G \times A, \\
& o(g, a)=g, \quad t(g, a)=g a
\end{aligned}
$$

Forgetting orientation, we get a connected regular graph $X(G, A)$ of degree $q+1$

Remark The definiton above of Cayley graphs is slightly different from the conventional one.
The reason why we take up this definition is that, when we consider a group G defined by generators A and relations $R(G=\langle A \mid R\rangle$, the map of A into G is not necessarily one-to-one (for instance, $G=\langle x, y| x^{-1} y x=$ $\left.y^{2}, y^{-1} z y=z^{2}, z^{-1} x z=z^{2}\right\rangle$ is trivial).

- $X(G, A)$ is a regular covering graph over a bouquet graph with the covering transformation group G.

- Conversely, A regular covering graph over a bouquet graph is a Cayley graph.
○ $X(G, A)$ is a tree if and only if G is a free group with the basis A.
- If $F(A)$ is the free group with basis A, then the canonital homomorphism $F(A) \longrightarrow G$ induces the universal covering map $X(F(A), A) \longrightarrow X(G, A)$.
Example $\mathbb{Z}_{2}=\left\langle a \mid a^{2}=1\right\rangle, \quad \mathbb{Z}_{2} * \mathbb{Z}_{2}=\left\langle a, b \mid a^{2}=1, b^{2}=1\right\rangle$

$$
\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1\right\rangle
$$

Homology groups

Let \boldsymbol{A} be an abelian group (for insatnce, $\boldsymbol{A}=\mathbb{Z}, \mathbb{R}$).
The the group of 0-chains

$$
C_{0}(X, A)=\left\{\sum_{x} a_{x} x ; a_{x} \in A\right\}
$$

The the group of 1-chains

$$
C_{1}(X, A)=\left\{\sum_{e} a_{e} e ; a_{e} \in A\right\} /\langle e+\bar{e}\rangle,
$$

that is, $C_{1}(X, A)$ is an A-module generated by E with the relation $\bar{e}=-e$.
The boundary map $\partial: C_{1}(X, A) \longrightarrow C_{0}(X, A)$ is defined by

$$
\partial e=t(e)-o(e)
$$

The homology groups are defined as

$$
\begin{aligned}
H_{0}(X, A) & =C_{0}(X, A) / \operatorname{Image} \partial \\
H_{1}(X, A) & =\operatorname{Ker} \partial\left(\subset C_{1}(X, A)\right)
\end{aligned}
$$

o The Euler number

$$
\begin{aligned}
\chi(X) & =\operatorname{dim} H_{0}(\boldsymbol{X}, \mathbb{R})-\operatorname{dim} H_{1}(\boldsymbol{X}, \mathbb{R}) \\
& =\# V-\# E / 2
\end{aligned}
$$

○ A closed path $c=\left(e_{1}, \ldots, e_{n}\right)$ gives rise to the homology class $e_{1}+\cdots+e_{n} \in H_{1}(X, \mathbb{Z})$.

○ Each $\alpha \in H_{1}(X, \mathbb{Z})$ is represented by a closed path.
○ $H_{1}(X, \mathbb{Z})$ is a lattice (group) of $H_{1}(X, \mathbb{R})$
The rank of $H_{1}(X, \mathbb{Z})$ is easily calculated by taking a spanning tree.

Spanning trees

A spanning tree \boldsymbol{T} is a subtree of \boldsymbol{X} containng all vertices of \boldsymbol{X}.
By contracting a spanning tree T to a point, one gets a bouquet graph with n loop edges, where n is the number of non-oriented edges not in T.
X has the same homotopy type with the bouquet graph. Therefore the number of unoriented edges not in T is equal to $\operatorname{dim} H_{1}(X, \mathbb{R})$.

Cohomology groups

Define the groups of 0 -cochains and 1 -cochains by

$$
\begin{aligned}
& C^{0}(X, \mathbb{R})=\{f: V \longrightarrow \mathbb{R}\} \\
& C^{1}(X . \mathbb{R})=\{\omega: E \longrightarrow \mathbb{R} ; \omega(\bar{e})=-\omega(e)\} .
\end{aligned}
$$

The coboundary operator $d: C^{0}(X, \mathbb{R}) \longrightarrow C^{1}(X, \mathbb{R})$ is defined by

$$
d f(e)=f(t(e))-f(o(e))
$$

The cohomology groups are defined as

$$
\begin{aligned}
& \boldsymbol{H}^{0}(X, \mathbb{R})=\text { Ker } d(=\mathbb{R}), \\
& \boldsymbol{H}^{1}(X, \mathbb{R})=C^{1}(X, \mathbb{R}) / \text { Image } d
\end{aligned}
$$

$H^{i}(X, \mathbb{R})$ is the dual space of $H_{i}(X, \mathbb{R})$.

Laplacians

By Laplacian, we mean the Laplace-Beltrami operator on a Riemannian manifold or a discrete Laplacian on a graph.

- Laplacian on a Riemannian manifold

$$
\Delta=\delta d=-\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j} \frac{\partial}{\partial x_{i}} \sqrt{\operatorname{det} g} g^{i j} \frac{\partial}{\partial x_{j}} .
$$

This is a positive operator acting on L^{2}-functions.

Discrete Laplacians on weighted graphs

$$
\Delta=\delta d
$$

where $\delta: C^{1}(X, \mathbb{R}) \longrightarrow C^{0}(X, \mathbb{R})$ is the (formal) ajoint of d with respect to the inner products on $C^{0}(X, \mathbb{R})$ and $C^{1}(X, \mathbb{R})$ defined respectively by

$$
\begin{aligned}
& \left\langle f_{1}, f_{2}\right\rangle=\sum_{x \in V} f_{1}(x) f_{2}(x) m_{V}(x), \\
& \left\langle\omega_{1}, \omega_{2}\right\rangle=\frac{1}{2} \sum_{e \in E} \omega_{1}(x) \omega_{2}(x) m_{E}(e) \quad\left(m_{E}(\bar{e})=m_{E}(e)\right)
\end{aligned}
$$

Explicitly

$$
(\delta \omega)(x)=-\frac{1}{m_{V}(x)} \sum_{e \in E_{x}} m_{E}(e) \omega(e)
$$

$$
(\Delta f)(x)=-\frac{1}{m_{V}(x)} \sum_{e \in E_{x}} m_{E}(e)(f(t e)-f(o e))
$$

(1) Combinatorial Laplacian (the case $m_{V}=m_{E} \equiv 1$)

$$
\Delta=\mathcal{D}-\mathcal{A}
$$

where \mathcal{A} is the adjacency operator defined as

$$
(\mathcal{A} f)(x)=\sum_{e \in E_{x}} f(t(e))
$$

and \mathcal{D} is defined as

$$
(\mathcal{D} f)(x)=(\operatorname{deg} x) f(x)
$$

(2) Canonical Laplacian (the case $m_{V}(x)=\operatorname{deg} x, m_{E} \equiv$ 1)

$$
\Delta=I-\mathcal{D}^{-1} \mathcal{A}
$$

Remark (1) The combinatorial Laplacian appears often in algebraic graph theory.
(2) The canonical Laplacian is related to simple random walks. In fact $\mathcal{D}^{-1} \mathcal{A}$ is the transition operator for the simple random walk.

From now on, we consider Laplacians acting on L^{2} functions.
The Laplacian on a manifold is not bounded, but the canonical Laplacians on graphs is always bounded (the combinatorial Lalacian is bounded if the graph has bounded degree).

3. Twisted Laplacians

Twisted Laplacians

- Let $\boldsymbol{X} \xrightarrow{G} X_{0}$ be a regular covering map over a closed Riemannian manifold or (weighted) finite graph.

Given a unitary representation $\rho: G \rightarrow \boldsymbol{U}(\boldsymbol{W})$, define the Hilbert space ℓ_{ρ}^{2} by

$$
\ell_{\rho}^{2}=\{f: V \rightarrow W ; f(g x)=\rho(g) f(x)\}
$$

The inner product is, for instance in the case of canonical Laplacians,

$$
\left\langle f_{1}, f_{2}\right\rangle=\sum_{x \in \mathcal{F}}\left\langle f_{1}(x), f_{2}(x)\right\rangle_{W}(\operatorname{deg} x)
$$

where \mathcal{F} is a fundamental set in V for the G-action.
Extend Δ to an operator acting in functions with values in W, and put $\Delta_{\rho}=\Delta \mid \ell_{\rho}^{2}$ (the twisted Laplacian).

In the case of manifolds, Δ_{ρ} is the Laplacian acting on sections of the flat vector bundle (possibly of infinite rank) associated with the representation ρ.

Application to isospectral problem

Lemma Let $\rho_{H}: G \longrightarrow U\left(\ell^{2}(\boldsymbol{H} \backslash G)\right)$ be the regular representation associated with a subgroup H of G. Then $\Delta_{\rho_{H}}$ is unitarily equivalent to $\Delta_{H \backslash X}$ on the quotient space $H \backslash X$. In particular, $\Delta_{\rho_{1}}$ is unitarily equivalent to Δ_{X} (an analogue of Theorem of normal basis).

$$
\ell^{2}(H \backslash G)=\left\{f \in C(H \backslash G) ; \quad \sum_{H g \in H \backslash G}|f(H g)|^{2}<\infty\right\}
$$

ρ_{H} is defined as

$$
\left(\rho_{H}(g) f\right)\left(\boldsymbol{H} g^{\prime}\right)=f\left(\boldsymbol{H} g^{\prime} \boldsymbol{g}\right) \quad\left(f \in \ell^{2}(\boldsymbol{H} \backslash \boldsymbol{G})\right)
$$

Theorem of normal basis says that if K is a finite Galois extension of k with Galois group G, then the k-linear representation of G on K is equivalent to the regular representation, or equivalently K is isomorphic to $k[G]$ as a k-linear space.

Let $\mathcal{F}_{G} \subset V$ be a fundamental set for the G-action on V. The Hilbert space $\ell_{\rho_{H}}^{2}$ is identified with the space of functions $f: V \times$ $(\boldsymbol{H} \backslash \boldsymbol{G}) \longrightarrow \mathrm{C}$ satisfying

$$
\begin{aligned}
f\left(g x, H g^{\prime}\right) & =f\left(x, H g^{\prime} g\right) \quad\left(g, g^{\prime} \in G, x \in V\right), \\
\|f\|^{2} & :=\sum_{x \in \mathcal{F}_{G}} \sum_{H g \in H \backslash G}|f(x, H g)|^{2} m(x)<\infty
\end{aligned}
$$

$(m(x)=\operatorname{deg} x)$. Given $\varphi \in \ell^{2}\left(V_{H \backslash X}\right)$, define $f=T(\varphi) \in \ell_{\rho_{H}}^{2}$ by setting $f(x, H g)=\varphi\left(\pi_{H}(g x)\right)$ where $\pi_{H}: V \longrightarrow V_{H \backslash X}$ is the canonical map. Since

$$
\mathcal{F}_{H}:=\bigcup_{H g \in H \backslash G} g \mathcal{F}_{G}
$$

is a fundamental set for the H-action on V, we have

$$
\|f\|^{2}=\sum_{x \in \mathcal{F}_{H}}\left|\varphi\left(\pi_{H}(x)\right)\right|^{2} m(x)=\sum_{x \in V_{H \backslash X}}|\varphi(x)|^{2} m(x)=\|\varphi\|^{2} .
$$

It is straightforward to check that T is isometry and commutes with the canonical discrete Laplacians.

Corollary If $\rho_{H_{1}}$ and $\rho_{H_{2}}$ are unitarily equivalent for two subgroups H_{1}, H_{2}, then $\Delta_{H_{1} \backslash X}$ and $\Delta_{H_{1} \backslash X}$ are unitary equivalent.

If G is finite group, then $\rho_{H_{1}}$ and $\rho_{H_{2}}$ are equivalent if and only if $\left|[g] \cap H_{1}\right|=\left|[g] \cap H_{2}\right|$ for every $g \in G$. The corollary provides us a method to construct isospectral manifolds and graphs.

The corollary above is an analogue of the following:
Let K be a finite Galois extension of Q with Galois group $G=$ $G(K / \mathrm{Q})$, and let k_{1} and k_{2} be subfields of K corresponding to subgroups H_{1} and H_{2}, respectively. Then the following two conditions are equivalent:
(1) Each conjugacy class of elements in G meets H_{1} and H_{2} in the same number of elements.
(2) The Dedekind zeta functions of k_{1} and k_{2} are the same.

Digression

Theorem Let G be a finite group. Under the con-
dition in the corollary above, the manifolds (finite
graphs) $H_{1} \backslash X$ and $H_{2} \backslash X$ are iso-length spectral,
in the sense that for each $x \geq 0$, there is a 1-to-1
correspondence between the sets
$\left\{\mathfrak{p}_{1} ;\right.$ prime geodesic cycles in $H_{1} \backslash X$ with $\left.\ell\left(\mathfrak{p}_{1}\right)=x\right\}$
and
$\left\{\mathfrak{p}_{2} ;\right.$ prime geodesic cycles in $H_{2} \backslash X$ with $\left.\ell\left(\mathfrak{p}_{2}\right)=x\right\}$
The proof relies on the fact that one can establish an analogue of algebraic number theory in which prime geodesic cycles play a similar role as prime ideals in number fields.

The (geometric) zeta function $Z_{X}(s)$ of a closed manifold (finite graph) X is defined as

$$
\begin{aligned}
& Z_{X}(s)=\prod_{\mathfrak{p}}\left(1-e^{-s \ell(\mathfrak{p})}\right)^{-1} \\
& \left(Z_{X}(u)=\prod_{\mathfrak{p} \in P}\left(1-u^{|\mathfrak{p}|}\right)^{-1}\right)
\end{aligned}
$$

This is an analogue of Dedekind zeta functions for number fields.

Corollary Under the same condition as in the theorem above, $Z_{H_{1} \backslash X}(s)=Z_{H_{2} \backslash X}(s)\left(Z_{H_{1} \backslash X}(u)=\right.$ $\left.Z_{H_{2} \backslash X}(u)\right)$.

Kazhdan distance

Let G be an arbitrary discrete group.

- Let $\rho: G \longrightarrow U(W)$ be a unitary representation on a Hilbert space W. Define $\delta(\rho, 1)$, the "distance" between the trivial representation 1 and ρ, by

$$
\delta(\rho, 1)=\inf _{\substack{v \in W \\\|v\|=1}} \sup _{g \in A}\|\rho(g) v-v\|
$$

where \boldsymbol{A} is a finite set of generators.
Theorem Let $\lambda_{0}(\rho)=\inf \sigma\left(\Delta_{\rho}\right)$. There exist positive constants c_{1}, c_{2} not depending on ρ such that

$$
c_{1} \delta(\rho, 1)^{2} \leq \lambda_{0}(\rho) \leq c_{2} \delta(\rho, 1)^{2}
$$

In particular, $\lambda_{0}(\rho)=0$ if and only if $\delta(\rho, 1)=0$.

Corollary(R. Brooks) $\lambda_{0}\left(\Delta_{X}\right)=0$ if and only if G is amenable.

This is a consequence of the fact that $\delta\left(\rho_{1}, 1\right)=0$ if and only if G is amenable.

Amenable groups

A discrete group G is said to be amenable if it has a (left) invariant mean; that is, a continuous linear functional m on the Banach space $\ell^{\infty}(G, \mathbb{R})$ satisfying the following properties :
(1) $m(1)=1$,
(2) if $f \geq 0$ and $f \in \ell^{\infty}(G, \mathbb{R})$, then $m(f) \geq 0$, and
(3) $m(\sigma f)=m(f)$, where $(\sigma f)(\mu)=f\left(\sigma^{-1} \mu\right)(\sigma \in$ $\left.G, f \in \ell^{\infty}(G, \mathbb{R})\right)$.

Idea of the proof is to use the expression of $\lambda_{0}(\rho)$:

$$
\lambda_{0}(\rho)=\inf _{f \in \ell^{2}(\rho)} \frac{\int\left\|d_{\rho} f\right\|^{2}}{\int\|f\|^{2}}
$$

Kazhdan groups

G is said to have the Kazhdan property (T) (or to be a Kazhdan group) if there exists a positive constant c such that $\delta(\rho, 1) \geq c$ for every non-trivial irreducible representation ρ of G.

A typical example of Kazhdan groups is $S L_{n}(\mathbb{Z})(n \geq 3)$. The rotation group $S O(n)(n \geq 5)$ has a finitely generated dense Kazhdan subgroup.

Expanders

Let $\cdots \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}$ be a sequence of finite-fold covering maps. Suppose that every covering $\operatorname{map} X_{n} \longrightarrow X_{0}$ is a subcovering map of a fixed regular covering map $X \xrightarrow{G} X_{0}$.

Theorem If G is a Kazhdan group, then $\left\{X_{n}\right\}$ is a family of expanders, namely there exists a positive constant c such that $\lambda_{1}\left(X_{n}\right) \geq c$ for every n.

A family of expanders is a model of efficient communication networks.

Ruziewicz's problem

This asks the uniqueness of rotationally invariant finitely additive measures defined on Lebesgue sets on S^{n-1}

The proof of uniqueness reduces to the existence of an ϵ-good set in $S O(n)$, where a finite set $A \subset S O(n)$ said to be an ϵ-good set if $\left\|L_{a} f-f\right\|_{2} \geq \epsilon\|f\|_{2}$ for $a \in A$ and $f \in L^{2}\left(S^{n-1}\right)$ with $\int_{S^{n-1}} f=0$.

If the group G generated by A is dense in $S O(n)$ and has the property (T), then \boldsymbol{A} is an ϵ-good set for some $\epsilon>0$.

You just make use of the representation of G on $L^{2}\left(S^{n-1}\right)$, and consider the twisted Laplacian on the Cayley graph $X(G, A)$.

Spectra of abel covers

Let $\boldsymbol{X} \xrightarrow{G} X_{0}$ be an abelian covering map (G is supposed to be an infinite abelian group).
The regular representation ρ_{1} of the abelian group G is decomposed as

$$
\rho_{1}=\int_{\widehat{G}}^{\oplus} \chi d \chi
$$

where \widehat{G} is the group of unitary characters (homomorphism of G into $U(1))$ with the normalized Haar measure $d \chi$.

Associated with this irreducible decomposition is the following direct integral decomposition:

$$
\Delta_{X}=\int_{\widehat{G}}^{\oplus} \Delta_{\chi} d \chi
$$

Let

$$
0 \leq \lambda_{0}(\chi) \leq \lambda_{1}(\chi) \leq \cdots \leq \lambda_{N-1}(\chi)
$$

be the eigenvalues of Δ_{χ}. Each λ_{i} is a continuous function on \widehat{G}.

Theorem $\quad \sigma\left(\Delta_{X}\right)=\bigcup_{i=0}^{N-1}\left\{\lambda_{i}(\chi) ; \chi \in \widehat{G}\right\}$ (in the case of manifolds, N is understood to be ∞).

- Any $\chi \in \widehat{G}$ is written as

$$
\chi(g)=\exp \left(2 \pi \sqrt{-1} \int_{C_{g}} \omega\right)
$$

with a harminic 1-form $\omega(\delta \omega=0)$), where C_{g} is a closed path such that $\mu\left(C_{g}\right)=g\left(\mu: H_{1}\left(X_{0}, \mathbb{Z}\right) \rightarrow G\right.$ is the homomorphism associated with the covering map).

- In the case of graphs, define $\Delta_{\omega}: C\left(V_{0}\right) \rightarrow C\left(V_{0}\right)$ by

$$
\left(\Delta_{\omega} f\right)(x)=\frac{1}{\operatorname{deg} x}\left(\sum_{e \in E_{x}} e^{2 \pi \sqrt{-1} \omega(e)} f(t e)\right)-f(x)
$$

$\left(\Delta_{\chi}, \ell_{\chi}^{2}\right)$ is unitarily equivalent to $\left(\Delta_{\omega}, \ell^{2}\left(V_{0}\right)\right)$.

No-gap conjecture (1) For the maximal abelian covering graph X over a finite regular graph, $\sigma\left(-\Delta_{X}\right)=[0,2]$.
(2) For the maximal abelian covering surface \boldsymbol{X} over a closed surface with constant negative curvature, $\sigma\left(-\Delta_{X}\right)=[0, \infty)$.

Theorem (Yu.Higuchi) Let $\boldsymbol{X} \xrightarrow{G} X_{0}$ be the maximal abelian covering graph of arbitrary finite graph. If $\operatorname{deg} \boldsymbol{x}$ is even for every vertex $\boldsymbol{x} \in \boldsymbol{X}_{0}$, then $\sigma\left(-\Delta_{X}\right)=[0,2]$.

Proof From the assumption, we have a closed path (Euler path) \boldsymbol{c} in \boldsymbol{X}_{0} such that every unoriented edge occurs in $c=\left(e_{1}, \ldots, e_{n}\right)$ once and only once (the famous solution to "the puzzle of the seven bridges" due to Euler).

- Define ω by setting $\omega\left(e_{i}\right)=1, \omega\left(\bar{e}_{i}\right)=-1$, otherwise $\omega(e)=0 . \omega$ is a harmonic 1-form $\left(\sum_{e \in E_{0 x}} \omega(e)=0\right)$. With this ω,

$$
\sum_{e \in E_{0 x}} \exp (2 \pi \sqrt{-1} t \omega)=(\operatorname{deg} x) \cos 2 \pi t a
$$

so that $\Delta_{t \omega} 1=(\cos 2 \pi t a-1) 1$. From this observation, we conclude $\sigma\left(-\Delta_{X}\right)=[0,2]$.

4. Analysis on Cayley graphs

Cogrowth and spectra of finitely generated groups

The cogrowth sequence $\left\{\ell_{n}\right\}_{n=0}^{\infty}$ of (G, A) is defined by $\ell_{n}=\mid\{w ; w$ is a reduced word over A with $g(w)=1$ and $|w| \leq n\} \mid$.

Remember that, for a word $w=\left(b_{1}, \ldots, b_{n}\right)$, the notation $g(w) \in G$ means the product $i\left(b_{1}\right) \cdots i\left(b_{n}\right)(g(\emptyset)=$ 1), where $i(\bar{a})$ is understood to be $i(a)^{-1}$.
Thus $\left\{\ell_{n}\right\}_{n=0}^{\infty}$ is a counting function for relations.

Theorem (Grigorchuk)
(i) $\ell=\lim _{n \rightarrow \infty} \ell_{n}^{1 / n}$ exists.
(ii) $1 \leq \stackrel{n \rightarrow \infty}{\leq} \leq \boldsymbol{q}$;
(iii) $\ell=1$ if and only if G is the free group with the basis A;
(iv) $\ell=q$ if and only if G is amenable;
(v) if G is not a free group, then $q^{1 / 2}<\ell \leq q$.

Recall that $q+1=2|A|$.

The adjacency operator on the Cayley graph $X(G, A)$ is expressed as

$$
\mathcal{A} f(g)=\sum_{a \in A}\left[f(g \cdot i(a))+f\left(g \cdot i(a)^{-1}\right)\right] .
$$

Note $\mathcal{A}: \ell^{2}(G) \longrightarrow \ell^{2}(G)$ is G-equivariant.
The cogrowth sequence is directly related to the adjacency operator \mathcal{A} by the formula

$$
\sum_{n=0}^{\infty} \ell_{n} z^{n}=\operatorname{tr}_{G}\left(\frac{1+z}{1-\mathcal{A} z+q z^{2}}\right) .
$$

Here $\operatorname{tr}_{G} \boldsymbol{T}=\left\langle\boldsymbol{T} \delta_{1}, \delta_{1}\right\rangle$ for a G-equivariant operator T.
If G is finite, then

$$
\operatorname{tr}_{G} T=\frac{1}{|G|} \operatorname{tr} T
$$

Theorem Put $\alpha=\sup \sigma(\mathcal{A})$. Then
(i) $2 q^{1 / 2} \leq \alpha \leq q+1$;
(ii) $\alpha=2 q^{1 / 2}$ if and only if G is a free group with the basis A;
(iii) $\alpha=q+1$ if and only if G is amenable;
(iv) $\ell=\left(\alpha+\left(\alpha^{2}-4 q\right)^{1 / 2}\right) / 2$ provided that G is not free.

The cogrowth rate is a complementary concept of the growth rate which is defined as

$$
b=\lim _{n \rightarrow \infty} b_{n}^{1 / n}
$$

where
$b_{n}=\mid\{g \in G ;$ there exists a word w with $g=g(w),|w| \leq n\} \mid$.
Theorem (i) $1 \leq b \leq q$;
(ii) if $b=1$, then G is amenable;
(iii) if G is the free group with the basis A, then $b=q$.
(iv) (K. Fujiwara)

$$
\sup \sigma(\mathcal{A}) \geq \frac{2(q+1)}{b^{1 / 2}+b^{-1 / 2}}
$$

Zeta functions of finitely generated groups

A word $w=\left(b_{1}, \ldots, b_{n}\right)$ is said to be cyclically reduced if $\overline{b_{i+1}} \neq b_{i}(i=1,2, \ldots, n-1)$ and $\overline{b_{1}} \neq b_{n}$.
A cyclically reduced word \boldsymbol{w} is said to be prime if it is not a power of another word.
Two words w_{1} and w_{2} are equivalent if w_{1} is obtained from w_{2} by a cyclic permutation.
Let P be the set of equivalence classes of cyclically reduced prime words w with $g(w)=1$.
Define the zeta function $Z(u)$ by

$$
Z(u)=\prod_{\mathfrak{p} \in P}\left(1-u^{\mid \mathfrak{p}}\right)^{-1}
$$

$$
Z(u)=\left(1-u^{2}\right)^{-(q-1) / 2} \operatorname{det}_{G}\left(1-\mathcal{A} u+q u^{2}\right)^{-1}
$$

where det_{G} stands for the G-determinant defined by $\operatorname{det}_{G}(T)=$ $\exp \operatorname{tr}_{G}(\log T)$

What can one say about analytic properties of $Z(u)$?

Counting "lattice points"

$F=F(A):$ the free group with the free basis A. Let $H=\operatorname{Ker}(\boldsymbol{F} \longrightarrow \boldsymbol{G})$.
$X(G, A)=H \backslash X(F, A)$.
(Recall $\boldsymbol{X}(\boldsymbol{F}, \boldsymbol{A})$ is the universal covering graph over $X(G, A))$,

Applying the path-lifting property of covering maps, we have

$$
\ell_{n}=|\{h \in H ; d(1, h) \leq n\}|,
$$

where d is the distance function on $X(F, H)$.
Put

$$
t_{n}=\sum_{k=0}^{[n / 2]}|\{h \in H ; d(1, h)=n-2 k\}| .
$$

$$
\sum_{n=0}^{\infty} t_{n} z^{n}=\operatorname{tr}_{G} \frac{1}{1-\mathcal{A} z+q z^{2}}
$$

Recall that the Chebychev polynomial U_{n} of the second kind is defined by $U_{n}(\cos \theta)=\sin (n+1) \theta / \sin \theta$ and satisfies

$$
\sum_{n=0}^{\infty} U_{n}(\mu) z^{n}=\frac{1}{1-2 \mu z+z^{2}}
$$

Thus

$$
t_{n}=q^{n / 2} \operatorname{tr}_{G} U_{n}\left(\frac{1}{2 \sqrt{q}} \mathcal{A}\right)
$$

If G is finite,

$$
t_{n}=\frac{q^{n / 2}}{N} \sum_{i=0}^{N-1} U_{n}\left(\frac{\mu_{i}}{2 \sqrt{q}}\right)
$$

where $N=|G|$ and $q+1=\mu_{0}>\mu_{1} \geq \cdots \geq \mu_{N-1} \geq$ $-(q+1)$ are eigenvalues of \mathcal{A}.

Remark $q+1$ is the maximal eigenvalue. $-(q+1)$ is eigenvalue if and only if the graph is bipartite.

$$
\left\{\begin{array}{l}
q^{n / 2} U_{n}\left(\frac{q+1}{2 \sqrt{q}}\right)=\frac{q^{n+1}-1}{q-1}=\sum_{d \mid q^{n}} d, \\
q^{n / 2} U_{n}\left(\frac{-(q+1)}{2 \sqrt{q}}\right)=(-1)^{n} \frac{q^{n+1}-1}{q-1}=(-1)^{n} \sum_{d \mid q^{n}} d, \\
q^{n / 2} U_{n}\left(\frac{\mu_{i}}{2 \sqrt{q}}\right)=o\left(q^{n}\right) \quad\left(\left|\mu_{i}\right|<q+1\right) .
\end{array}\right.
$$

Ramanujan graphs

A finite regular graph of degree $q+1$ is said to be a Ramanujan graph if every eigenvalues μ_{i} of \mathcal{A} except for $\pm(q+1)$ satisfies $\left|\mu_{i}\right| \leq 2 \sqrt{q}$.

Remark (1) A graph is Ramanujan if and only if the zeta function satisfies the Riemannian Hypothesis.
(2) A family of Ramanujan graphs is the "best" family of expanders.

When $H=F$ (G is trivial), we have $t_{n}=\sum_{d \mid q^{n}} d$, and $8 t_{n}$ coincides with the number of representations of q^{n} as a sum of 4 squares provided that q is an odd prime (Jacobi).

Problem Find a criterion for a normal subgroup H of finite index in $F(A)$ such that an appropriate multiple of t_{n} is the number of representations of q^{n} by an integral quadratic form (of 4 variables).

Example (Lubotzky, Phillips and Sarnak) There exists $H=H(p)$ such that $2 t_{n}$ is expressed as the number of representatives of q^{n} by the quadratic form $x_{1}{ }^{2}+$ $(2 p)^{2} x_{2}{ }^{2}+(2 p)^{2} x_{3}{ }^{2}+(2 p)^{2} x_{4}{ }^{2}$, where p, q are unequal primes both $\equiv 1(\bmod 4)$.
$\Longrightarrow 2 t_{n}$ is the Fourier coefficient of a modular form of weight two for the congruence subgroup $\Gamma\left(16 p^{2}\right)$
$\Longrightarrow 2 t_{n}$ is expressed as the sum of the Fourier coefficient $a\left(q^{n}\right)$ of a cusp form and the coefficient $\delta\left(q^{n}\right)$ of an Eisenstein series.

Fact (1) $\delta\left(q^{n}\right)=\sum_{d \mid q^{n}} d S(d)$ with a periodic function S on \mathbb{N}.
(2) Ramanujan conjecture (now a theorem) $a\left(q^{n}\right)=O_{\epsilon}\left(q^{n(1 / 2+\epsilon)}\right)$ for an arbitrary positive ϵ.

> Fact If $\sum_{d \mid q^{n}} d R(d)=o\left(q^{n}\right)$ for a periodic function R on \mathbb{N}, then $\sum_{d \mid q^{n}} d R(d)=0$.

$$
\begin{gathered}
t_{n}=\frac{q^{n / 2}}{N} \sum_{i=0}^{N-1} U_{n}\left(\frac{\mu_{i}}{2 \sqrt{q}}\right), \\
N\left(a\left(q^{n}\right)+\delta\left(q^{n}\right)\right)=2 \sum_{d \mid q^{n}} d+2(-1)^{n} \sum_{d \mid q^{n}} d+2 q^{n / 2} \sum_{i=1}^{N-2} U_{n}\left(\frac{\mu_{i}}{2 \sqrt{q}}\right) \\
\left\{\begin{array}{l}
q^{n / 2} U_{n}\left(\frac{q+1}{2 \sqrt{q}}\right)=\frac{q^{n+1}-1}{q-1}=\sum_{d \mid q^{n}} d, \\
q^{n / 2} U_{n}\left(\frac{-(q+1)}{2 \sqrt{q}}\right)=(-1)^{n} \frac{q^{n+1}-1}{q-1}=(-1)^{n} \sum_{d \mid q^{n}} d, \\
q^{n / 2} U_{n}\left(\frac{\mu_{i}}{2 \sqrt{q}}\right)=o\left(q^{n}\right) \quad\left(\left|\mu_{i}\right|<q+1\right) . \\
\Longrightarrow N \delta\left(q^{n}\right)-2 \sum_{d \mid q^{n}} d-2(-1)^{n} \sum_{d \mid q^{n}} d=o\left(q^{n}\right) \\
\Longrightarrow N \delta\left(q^{n}\right)-2 \sum_{d \mid q^{n}} d-2(-1)^{n} \sum_{d \mid q^{n}} d=0
\end{array} \Longrightarrow \sum_{i=1}^{N-2} U_{n}\left(\frac{\mu_{i}}{2 \sqrt{q}}\right)=O_{\epsilon}\left(q^{n \epsilon}\right)\right. \\
\Longrightarrow\left|\mu_{i}\right| \leq 2 \sqrt{q} \text { for } 1 \leq i \leq N-1
\end{gathered}
$$

