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The purpose of this lecture

To review ideas, methods and results in analysis on cov-

ering spaces, especially analysis on covering graphs over

finite graphs.

1) Quick review of covering spaces

2) Twisted Laplacians and Kazhdan distance

3) Analysis on Cayley graphs (cogrowth, Ramanujan

graphs, zeta functions of finitely generated groups)

5) Abel-Jacobi maps in graph theory

6) Large deviation asymptotics of heat kernels on peri-

odic manifolds
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1. Quick Review of Covering Spaces
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Covering Spaces

As spaces, we mainly treat manifolds and 1-dimensional

cell complexes (graphs).

Roughly speaking, a covering map is a surjective map of

spaces π : X −→ X0 which preserves the local structure

(topology, Riemannian metric, adjacency relation (and

weights) of graphs).

X is said to be a covering space over X0.

In this lecture, the base space X0 is supposed to be

compact (thus in the cese of graphs, X0 is supposed to be

a finite graphs).
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A schematic image of a covering map
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Unique lifting of paths
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Regular covering spaces

If a group Γ acts on a space freely and discontinuously,

then the canonical map π : X −→ Γ\X = X0 is a covering

map.

A covering map (space) obtained in this way is called

a regular covering map (space) with covering transforma-

tion group Γ.

A regular covering space with abelian covering transfor-

mation group is called an abelian covering space.
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Universal covering

Among all covering spaces over a fixed space X0, there

is a “maximal one”, which is called the universal covering

map and is characterized by simply connectedness.

The universal covering space over X0 is a regular cov-

ering space whose covering transfromation group is the

fundamental group π1(X0).

As a set, π1(X0) is the set of homotopy classes of loops

in X0 with a fixed base point.
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Galois Theory for covering maps

A covering space X over X0

⇐⇒
A subgroup Γ of π1(X0)

The correspondence is given as

X =⇒ Γ = π1(X)

Γ =⇒ X = Γ\X̂0,

where X̂0 is the universal covering space over X0.

A regular covering space X over X0

⇐⇒
A normal subgroup Γ of π1(X0).

This being the case, the factor group G = Γ\π1(X0) is

the covering transformation group of X −→ X0.
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Abelian covering maps

Let [π1(X0), π1(X0)] be the commutator group (the nor-

mal subgroup of π1(X0) generated by elements of the form

[a, b] = aba−1b−1),

Note H1(X0, Z) = [π1(X0), π1(X0)]\π1(X0), the 1st ho-

mology group of X0 (Hurewitz).

Thus X = [π1(X0), π1(X0)]\X̂0 is the covering space

whose covering transformation group is H1(X0, Z).

This X is “maximal among all abelian covering spaces

over X0.

(Use the fact that Γ\π1(X0) is abelian if and only if Γ

contains the commutator group [π1(X0), π1(X0)]).
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An abelian covering space X over X0

⇐⇒
A subgroup Γ of π1(X0) with [π1(X0), π1(X0)] ⊂ Γ

⇐⇒
A subgroup H of H1(X0, Z)

⇐⇒
A surjective homomorphism H1(X0, Z) −→ G
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Example of Universal Covering Spaces

Since a simply connected graph is tree, the universal

covering graph is a tree.
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Abelian Covering Spaces

I)

This is an abelian covering surface over a closed surface

of genus two.
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II)

Hexagonal lattice

In general, a covering graph over a finite graph with free

abelian covering transformation group is called a crystal

lattice or topological crystal.
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Triangular lattice

Kagome lattice

Kagome lattice
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2. Quick Review of Graphs
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Grahps –Terminology–

A graph X is an abstract figure consisting of two kind

of objects; say vertices and edges.

Denote as X = (V, E), and “realize” as
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V

The set of vertices
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E

The set of all oriented edges

o(e) = the origin of e, t(e) = the terminus of e.
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|Ex| = deg x, the degree of the vertex x

◦ |Ex| is called the degree of x, and written as deg x.
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◦ If deg x ≡ k, the graph X is said to be a regular graph

of degree k.

Convention : we write q + 1 for the degree of a regular

graph.

◦ A subset Eo ⊂ E is said to be an orientation if Eo∪Eo =

E, Eo ∩ Eo = ∅.
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Graph-theoretic definition of covering graphs

Let X = (V, E), and X0 = (V0, E0). A pair of maps

(ϕ, ψ) is said to be a covering map if

1. ϕ : V −→ V0 and ψ : E −→ E0 are surjective,

2. o
(
ψ(e)

)
= ϕ

(
o(e)

)
, t

(
ψ(e)

)
= ϕ

(
t(e)

)
,

3. ψ(e) = ψ(e),

4. for every x ∈ V , the restriction ψ : Ex −→ E0,ϕ(x) is

a bijection.
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Cayley (Serre) graphs

G : a group,

i : A −→ G : a map of a finite set A into G such that

i(A) generates G. We put q = 2|A| − 1.

A = {a; a ∈ A} : a disjoint copy of A.

A word with letters in A means either void (denoted by

∅) or a finite sequence w = (b1, . . . , bn) with bi ∈ A ∪ A.

The length n of a word w = (b1, . . . , bn) is denoted by

|w| (|∅| = 0).

A word w = (b1, . . . , bn) is said to be reduced if bi+1 ̸=
bi (i = 1, . . . , n − 1), where a is understood to be a.

Denote by g(w) ∈ G the product i(b1) · · · i(bn) (g(∅) = 1),

where i(a) is understood to be i(a)−1.
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Given a (G, i, A), the Cayley graph X = X(G, A) is

constructed in the following way.

V = G, Eo = G × A,

o(g, a) = g, t(g, a) = ga

Forgetting orientation, we get a connected regular graph

X(G, A) of degree q + 1

Remark The definiton above of Cayley graphs is slightly

different from the conventional one.

The reason why we take up this definition is that, when

we consider a group G defined by generators A and re-

lations R (G = 〈A|R〉), the map of A into G is not

necessarily one-to-one (for instance, G = 〈x, y|x−1yx =

y2, y−1zy = z2, z−1xz = z2〉 is trivial).

25



◦ X(G, A) is a regular covering graph over a bouquet

graph with the covering transformation group G.

◦ Conversely, A regular covering graph over a bouquet

graph is a Cayley graph.

◦ X(G, A) is a tree if and only if G is a free group with

the basis A.
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◦ If F (A) is the free group with basis A, then the canon-

ical homomorphism F (A) −→ G induces the universal

covering map X(F (A), A) −→ X(G, A).

Example Z2 = 〈a| a2 = 1〉, Z2∗Z2 = 〈a, b| a2 = 1, b2 = 1〉

Z2 ∗ Z2 ∗ Z2 = 〈a, b, c| a2 = b2 = c2 = 1〉
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Homology groups

Let A be an abelian group (for insatnce, A = Z, R).

The the group of 0-chains

C0(X, A) = {
∑

x

axx; ax ∈ A}

The the group of 1-chains

C1(X, A) = {
∑

e

aee; ae ∈ A}/〈e + e〉,

that is, C1(X, A) is an A-module generated by E with the

relation e = −e.

The boundary map ∂ : C1(X, A) −→ C0(X, A) is de-

fined by

∂e = t(e) − o(e)
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The homology groups are defined as

H0(X, A) = C0(X, A)/Image ∂,

H1(X, A) = Ker ∂ (⊂ C1(X, A))

◦ The Euler number

χ(X) = dim H0(X, R) − dim H1(X, R)

= #V − #E/2

◦ A closed path c = (e1, . . . , en) gives rise to the homology

class e1 + · · · + en ∈ H1(X, Z).

◦ Each α ∈ H1(X, Z) is represented by a closed path.

◦ H1(X, Z) is a lattice (group) of H1(X, R)

The rank of H1(X, Z) is easily calculated by taking a

spanning tree.
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Spanning trees

A spanning tree T is a subtree of X containng all ver-

tices of X.

By contracting a spanning tree T to a point, one gets a

bouquet graph with n loop edges, where n is the number

of non-oriented edges not in T .

X has the same homotopy type with the bouquet graph.

Therefore the number of unoriented edges not in T is

equal to dim H1(X, R).
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Cohomology groups

Define the groups of 0-cochains and 1-cochains by

C0(X, R) = {f : V −→ R}
C1(X.R) = {ω : E −→ R; ω(e) = −ω(e)}.

The coboundary operator d : C0(X, R) −→ C1(X, R) is

defined by

df(e) = f(t(e)) − f(o(e)).

The cohomology groups are defined as

H0(X, R) = Ker d(= R),

H1(X, R) = C1(X, R)/Image d

Hi(X, R) is the dual space of Hi(X, R).
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Laplacians

By Laplacian, we mean the Laplace-Beltrami operator

on a Riemannian manifold or a discrete Laplacian on a

graph.

◦ Laplacian on a Riemannian manifold

∆ = δd = − 1√
det g

∑
i,j

∂

∂xi

√
det ggij ∂

∂xj

.

This is a positive operator acting on L2-functions.

32



Discrete Laplacians on weighted graphs

∆ = δd

where δ : C1(X, R) −→ C0(X, R) is the (formal) ajoint

of d with respect to the inner products on C0(X, R) and

C1(X, R) defined respectively by

〈f1, f2〉 =
∑
x∈V

f1(x)f2(x)mV (x),

〈ω1, ω2〉 =
1

2

∑
e∈E

ω1(x)ω2(x)mE(e) (mE(e) = mE(e))

Explicitly

(δω)(x) = − 1

mV (x)

∑
e∈Ex

mE(e)ω(e)
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(∆f)(x) = − 1

mV (x)

∑
e∈Ex

mE(e)
(
f(te) − f(oe)

)
(1) Combinatorial Laplacian (the case mV = mE ≡ 1)

∆ = D − A

where A is the adjacency operator defined as

(Af)(x) =
∑
e∈Ex

f(t(e))

and D is defined as

(Df)(x) = (deg x)f(x).
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(2) Canonical Laplacian (the case mV (x) = deg x, mE ≡
1)

∆ = I − D−1A

Remark (1) The combinatorial Laplacian appears often

in algebraic graph theory.

(2) The canonical Laplacian is related to simple random

walks. In fact D−1A is the transition operator for the

simple random walk.

From now on, we consider Laplacians acting on L2-

functions.

The Laplacian on a manifold is not bounded, but the

canonical Laplacians on graphs is always bounded (the

combinatorial Lalacian is bounded if the graph has bounded

degree).
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3. Twisted Laplacians
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Twisted Laplacians

◦ Let X
G→ X0 be a regular covering map over a closed

Riemannian manifold or (weighted) finite graph.

Given a unitary representation ρ : G → U(W ), define

the Hilbert space ℓ2
ρ by

ℓ2
ρ = {f : V → W ; f(gx) = ρ(g)f(x)}

The inner product is, for instance in the case of canonical

Laplacians,

〈f1, f2〉 =
∑
x∈F

〈f1(x), f2(x)〉W (deg x)

where F is a fundamental set in V for the G-action.

Extend ∆ to an operator acting in functions with values

in W , and put ∆ρ = ∆|ℓ2
ρ (the twisted Laplacian).
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In the case of manifolds, ∆ρ is the Laplacian acting on

sections of the flat vector bundle (possibly of infinite rank)

associated with the representation ρ.
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Application to isospectral problem

Lemma Let ρH : G −→ U
(
ℓ2(H\G)

)
be the regular

representation associated with a subgroup H of G.

Then ∆ρH
is unitarily equivalent to ∆H\X on the

quotient space H\X. In particular, ∆ρ1 is unitar-

ily equivalent to ∆X (an analogue of Theorem of

normal basis).

ℓ2(H\G) = {f ∈ C(H\G);
∑

Hg∈H\G

|f(Hg)|2 < ∞}

ρH is defined as

(ρH(g)f)(Hg′) = f(Hg′g) (f ∈ ℓ2(H\G)).
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Theorem of normal basis says that if K is a finite Ga-

lois extension of k with Galois group G, then the k-linear

representation of G on K is equivalent to the regular rep-

resentation, or equivalently K is isomorphic to k[G] as a

k-linear space.
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Let FG ⊂ V be a fundamental set for the G-action on V . The
Hilbert space ℓ2

ρH
is identified with the space of functions f : V ×

(H\G) −→ C satisfying

f(gx, Hg′) = f(x, Hg′g) (g, g′ ∈ G, x ∈ V ),

∥f∥2 :=
∑

x∈FG

∑
Hg∈H\G

|f(x, Hg)|2m(x) < ∞

(m(x) = deg x). Given ϕ ∈ ℓ2(VH\X), define f = T (ϕ) ∈ ℓ2
ρH

by setting f(x, Hg) = ϕ
(
πH(gx)

)
where πH : V −→ VH\X is the

canonical map. Since

FH :=
⋃

Hg∈H\G

gFG

is a fundamental set for the H-action on V , we have

∥f∥2 =
∑

x∈FH

|ϕ(
πH(x)

)|2m(x) =
∑

x∈VH\X

|ϕ(x)|2m(x) = ∥ϕ∥2.

It is straightforward to check that T is isometry and commutes with
the canonical discrete Laplacians.
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Corollary If ρH1 and ρH2 are unitarily equivalent

for two subgroups H1, H2, then ∆H1\X and ∆H1\X

are unitary equivalent.

If G is finite group, then ρH1 and ρH2 are equivalent if

and only if |[g] ∩ H1| = |[g] ∩ H2| for every g ∈ G. The

corollary provides us a method to construct isospectral

manifolds and graphs.

The corollary above is an analogue of the following:

Let K be a finite Galois extension of Q with Galois group G =
G(K/Q), and let k1 and k2 be subfields of K corresponding to sub-
groups H1 and H2, respectively. Then the following two conditions
are equivalent:

(1) Each conjugacy class of elements in G meets H1 and H2 in the
same number of elements.

(2) The Dedekind zeta functions of k1 and k2 are the same.
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Digression

Theorem Let G be a finite group. Under the con-

dition in the corollary above, the manifolds (finite

graphs) H1\X and H2\X are iso-length spectral,

in the sense that for each x ≥ 0, there is a 1-to-1

correspondence between the sets

{p1; prime geodesic cycles in H1\X with ℓ(p1) = x}
and

{p2; prime geodesic cycles in H2\X with ℓ(p2) = x}

The proof relies on the fact that one can establish an

analogue of algebraic number theory in which prime geodesic

cycles play a similar role as prime ideals in number fields.
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The (geometric) zeta function ZX(s) of a closed mani-

fold (finite graph) X is defined as

ZX(s) =
∏
p

(
1 − e−sℓ(p)

)−1

(ZX(u) =
∏
p∈P

(1 − u|p|)−1)

This is an analogue of Dedekind zeta functions for number

fields.

Corollary Under the same condition as in the the-

orem above, ZH1\X(s) = ZH2\X(s) (ZH1\X(u) =

ZH2\X(u)).

44



Kazhdan distance

Let G be an arbitrary discrete group.

◦ Let ρ : G −→ U(W ) be a unitary representation on a

Hilbert space W . Define δ(ρ, 1), the “distance” between

the trivial representation 1 and ρ, by

δ(ρ, 1) = inf
v∈W
∥v∥=1

sup
g∈A

∥ρ(g)v − v∥

where A is a finite set of generators.

Theorem Let λ0(ρ) = inf σ(∆ρ). There exist posi-

tive constants c1, c2 not depending on ρ such that

c1δ(ρ, 1)2 ≤ λ0(ρ) ≤ c2δ(ρ, 1)2

In particular, λ0(ρ) = 0 if and only if δ(ρ, 1) = 0.
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Corollary(R. Brooks) λ0(∆X) = 0 if and only if G

is amenable.

This is a consequence of the fact that δ(ρ1, 1) = 0 if and

only if G is amenable.

Amenable groups

A discrete group G is said to be amenable if it has a

(left) invariant mean; that is, a continuous linear func-

tional m on the Banach space ℓ∞(G, R) satisfying the fol-

lowing properties :

(1) m(1) = 1,

(2) if f ≥ 0 and f ∈ ℓ∞(G, R), then m(f) ≥ 0, and

(3) m(σf) = m(f), where (σf)(µ) = f(σ−1µ) (σ ∈
G, f ∈ ℓ∞(G, R)).
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Idea of the proof is to use the expression of λ0(ρ):

λ0(ρ) = inf
f∈ℓ2(ρ)

∫ ∥dρf∥2∫ ∥f∥2
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Kazhdan groups

G is said to have the Kazhdan property (T) (or to be a

Kazhdan group) if there exists a positive constant c such

that δ(ρ, 1) ≥ c for every non-trivial irreducible represen-

tation ρ of G.

A typical example of Kazhdan groups is SLn(Z) (n ≥ 3).

The rotation group SO(n) (n ≥ 5) has a finitely generated

dense Kazhdan subgroup.
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Expanders

Let · · · → Xn → · · · → X1 → X0 be a sequence of

finite-fold covering maps. Suppose that every covering

map Xn −→ X0 is a subcovering map of a fixed regular

covering map X
G→ X0.

Theorem If G is a Kazhdan group, then {Xn} is a

family of expanders, namely there exists a positive

constant c such that λ1(Xn) ≥ c for every n.

A family of expanders is a model of efficient communi-

cation networks.

49



Ruziewicz’s problem

This asks the uniqueness of rotationally invariant finitely

additive measures defined on Lebesgue sets on Sn−1

The proof of uniqueness reduces to the existence of an

ϵ-good set in SO(n), where a finite set A ⊂ SO(n) said

to be an ϵ-good set if ∥Laf − f∥2 ≥ ϵ∥f∥2 for a ∈ A and

f ∈ L2(Sn−1) with

∫
Sn−1

f = 0.

If the group G generated by A is dense in SO(n) and

has the property (T), then A is an ϵ-good set for some

ϵ > 0.

You just make use of the representation of G on L2(Sn−1),

and consider the twisted Laplacian on the Cayley graph

X(G, A).

50



Spectra of abel covers

Let X
G→ X0 be an abelian covering map (G is supposed

to be an infinite abelian group).

The regular representation ρ1 of the abelian group G is

decomposed as

ρ1 =

∫ ⊕

Ĝ

χ dχ,

where Ĝ is the group of unitary characters (homomor-

phism of G into U(1)) with the normalized Haar measure

dχ.
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Associated with this irreducible decomposition is the

following direct integral decomposition:

∆X =

∫ ⊕

Ĝ

∆χdχ

Let

0 ≤ λ0(χ) ≤ λ1(χ) ≤ · · · ≤ λN−1(χ)

be the eigenvalues of ∆χ. Each λi is a continuous function

on Ĝ.

Theorem σ(∆X) =
⋃N−1

i=0 {λi(χ); χ ∈ Ĝ} (in the

case of manifolds, N is understood to be ∞).
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◦ Any χ ∈ Ĝ is written as

χ(g) = exp
(
2π

√−1

∫
Cg

ω
)

with a harminic 1-form ω (δω = 0)), where Cg is a closed

path such that µ(Cg) = g (µ : H1(X0, Z) → G is the

homomorphism associated with the covering map).

◦ In the case of graphs, define ∆ω : C(V0) → C(V0) by

(∆ωf)(x) =
1

deg x

( ∑
e∈Ex

e2π
√−1ω(e)f(te)

)
− f(x)

(∆χ, ℓ2
χ) is unitarily equivalent to (∆ω, ℓ2(V0)).
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No-gap conjecture (1) For the maximal abelian

covering graph X over a finite regular graph,

σ(−∆X) = [0, 2].

(2) For the maximal abelian covering surface X

over a closed surface with constant negative curva-

ture, σ(−∆X) = [0, ∞).

Theorem (Yu.Higuchi) Let X
G→ X0 be the

maximal abelian covering graph of arbitrary finite

graph. If deg x is even for every vertex x ∈ X0,

then σ(−∆X) = [0, 2].

Proof From the assumption, we have a closed path (Euler

path) c in X0 such that every unoriented edge occurs in

c = (e1, . . . , en) once and only once (the famous solution

to “the puzzle of the seven bridges” due to Euler).
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◦ Define ω by setting ω(ei) = 1, ω(ei) = −1, otherwise

ω(e) = 0. ω is a harmonic 1-form (
∑

e∈E0x
ω(e) = 0).

With this ω,∑
e∈E0x

exp(2π
√−1tω) = (deg x) cos 2πta,

so that ∆tω1 = (cos 2πta − 1)1. From this observation,

we conclude σ(−∆X) = [0, 2].
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4. Analysis on Cayley graphs
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Cogrowth and spectra of finitely generated groups

The cogrowth sequence {ℓn}∞
n=0 of (G, A) is defined by

ℓn =
∣∣{w; w is a reduced word over A with g(w) = 1 and |w| ≤ n}∣∣.

Remember that, for a word w = (b1, . . . , bn), the nota-

tion g(w) ∈ G means the product i(b1) · · · i(bn) (g(∅) =

1), where i(a) is understood to be i(a)−1.

Thus {ℓn}∞
n=0 is a counting function for relations.
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Theorem (Grigorchuk)

(i) ℓ = lim
n→∞ ℓ1/n

n exists.

(ii) 1 ≤ ℓ ≤ q;

(iii) ℓ = 1 if and only if G is the free group with

the basis A;

(iv) ℓ = q if and only if G is amenable;

(v) if G is not a free group, then q1/2 < ℓ ≤ q.

Recall that q + 1 = 2|A|.
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The adjacency operator on the Cayley graph X(G, A)

is expressed as

Af(g) =
∑
a∈A

[
f

(
g · i(a)

)
+ f

(
g · i(a)−1

)]
.

Note A : ℓ2(G) −→ ℓ2(G) is G-equivariant.

The cogrowth sequence is directly related to the adja-

cency operator A by the formula
∞∑

n=0

ℓnzn = trG

(
1 + z

1 − Az + qz2

)
.

Here trGT = 〈Tδ1, δ1〉 for a G-equivariant operator T .

If G is finite, then

trGT =
1

|G|tr T
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Theorem Put α = sup σ(A). Then

(i) 2q1/2 ≤ α ≤ q + 1;

(ii) α = 2q1/2 if and only if G is a free group with

the basis A;

(iii) α = q + 1 if and only if G is amenable;

(iv) ℓ =
(
α + (α2 − 4q)1/2

)
/2 provided that G is

not free.

60



The cogrowth rate is a complementary concept of the

growth rate which is defined as

b = lim
n→∞ b1/n

n

where

bn =
∣∣{g ∈ G; there exists a word w with g = g(w), |w| ≤ n}∣∣.

Theorem (i) 1 ≤ b ≤ q;

(ii) if b = 1, then G is amenable;

(iii) if G is the free group with the basis A, then

b = q.

(iv) (K. Fujiwara)

sup σ(A) ≥ 2(q + 1)

b1/2 + b−1/2
.
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Zeta functions of finitely generated groups

A word w = (b1, . . . , bn) is said to be cyclically reduced

if bi+1 ̸= bi (i = 1, 2, . . . , n − 1) and b1 ̸= bn.

A cyclically reduced word w is said to be prime if it is

not a power of another word.

Two words w1 and w2 are equivalent if w1 is obtained

from w2 by a cyclic permutation.

Let P be the set of equivalence classes of cyclically re-

duced prime words w with g(w) = 1.

Define the zeta function Z(u) by

Z(u) =
∏
p∈P

(1 − u|p)−1.
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Z(u) = (1 − u2)−(q−1)/2detG(1 − Au + qu2)−1,

where detG stands for the G-determinant defined by detG(T ) =

exp trG(log T )

What can one say about analytic properties of Z(u) ?
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Counting “lattice points”

F = F (A) : the free group with the free basis A. Let

H = Ker(F −→ G).

X(G, A) = H\X(F, A).

(Recall X(F, A) is the universal covering graph over

X(G, A)),

Applying the path-lifting property of covering maps, we

have

ℓn =
∣∣{h ∈ H; d(1, h) ≤ n}∣∣,

where d is the distance function on X(F, H).

Put

tn =

[n/2]∑
k=0

∣∣{h ∈ H; d(1, h) = n − 2k}∣∣.
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∞∑
n=0

tnzn = trG

1

1 − Az + qz2
.

Recall that the Chebychev polynomial Un of the second

kind is defined by Un(cos θ) = sin(n + 1)θ/ sin θ and sat-

isfies ∞∑
n=0

Un(µ)zn =
1

1 − 2µz + z2
.

Thus

tn = qn/2trGUn

( 1

2
√

q
A

)
.
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If G is finite,

tn =
qn/2

N

N−1∑
i=0

Un

( µi

2
√

q

)
,

where N = |G| and q + 1 = µ0 > µ1 ≥ · · · ≥ µN−1 ≥
−(q + 1) are eigenvalues of A.

Remark q + 1 is the maximal eigenvalue. −(q + 1) is

eigenvalue if and only if the graph is bipartite.


qn/2Un

(
q+1
2
√

q

)
= qn+1−1

q−1
=

∑
d|qn d,

qn/2Un

(
−(q+1)

2
√

q

)
= (−1)nqn+1−1

q−1
= (−1)n

∑
d|qn d,

qn/2Un

(
µi

2
√

q

)
= o(qn) (|µi| < q + 1).
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Ramanujan graphs

A finite regular graph of degree q + 1 is said to be a

Ramanujan graph if every eigenvalues µi of A except for

±(q + 1) satisfies |µi| ≤ 2
√

q.

Remark (1) A graph is Ramanujan if and only if the

zeta function satisfies the Riemannian Hypothesis.

(2) A family of Ramanujan graphs is the “best” family

of expanders.
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When H = F (G is trivial), we have tn =
∑

d|qn d, and

8tn coincides with the number of representations of qn

as a sum of 4 squares provided that q is an odd prime

(Jacobi).

Problem Find a criterion for a normal subgroup H of

finite index in F (A) such that an appropriate multiple of

tn is the number of representations of qn by an integral

quadratic form (of 4 variables).

Example (Lubotzky, Phillips and Sarnak) There ex-

ists H = H(p) such that 2tn is expressed as the num-

ber of representatives of qn by the quadratic form x1
2 +

(2p)2x2
2 + (2p)2x3

2 + (2p)2x4
2, where p, q are unequal

primes both ≡ 1 (mod 4).
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=⇒ 2tn is the Fourier coefficient of a modular form of

weight two for the congruence subgroup Γ(16p2)

=⇒ 2tn is expressed as the sum of the Fourier coeffi-

cient a(qn) of a cusp form and the coefficient δ(qn) of an

Eisenstein series.

Fact (1) δ(qn) =
∑

d|qn dS(d) with a periodic func-

tion S on N.

(2) Ramanujan conjecture (now a theorem)

a(qn) = Oϵ(q
n(1/2+ϵ)) for an arbitrary positive ϵ.

Fact If
∑

d|qn dR(d) = o(qn) for a periodic function

R on N, then
∑

d|qn dR(d) = 0.
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tn =
qn/2

N

N−1∑
i=0

Un

( µi

2
√

q

)
,

N(a(qn)+δ(qn)) = 2
∑
d|qn

d+2(−1)n
∑
d|qn

d+2qn/2
N−2∑
i=1

Un

( µi

2
√

q

)


qn/2Un

(
q+1
2
√

q

)
= qn+1−1

q−1
=

∑
d|qn d,

qn/2Un

(
−(q+1)

2
√

q

)
= (−1)nqn+1−1

q−1
= (−1)n

∑
d|qn d,

qn/2Un

(
µi

2
√

q

)
= o(qn) (|µi| < q + 1).

=⇒ Nδ(qn) − 2
∑

d|qn d − 2(−1)n
∑

d|qn d = o(qn)

=⇒ Nδ(qn) − 2
∑

d|qn d − 2(−1)n
∑

d|qn d = 0

=⇒ ∑N−2
i=1 Un

(
µi

2
√

q

)
= Oϵ(q

nϵ)

=⇒ |µi| ≤ 2
√

q for 1 ≤ i ≤ N − 1
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