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The purpose of this talk

To give a relationship between the notion of discrete

Abel-Jacobi maps, which has been introduced in algebraic

graph theory, and the notion of Albanese maps in graph

theory, which is related to random walks on crystal lat-

tices.

For an illustration, we look at two examples of Albanese

maps, which have something to do with the diamond crys-

tal and its twin.
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Background

Abel-Jacobi maps, Albanese maps in algebraic geometry

⇐= The studies of algebraic functions by Gauss, Abel,

Jacobi, Riemann, and others in 19th century.

Gauss, Abel, and Jacobi studied the (complex) integral

of the form ∫
γ

R(z,
√

ϕ(z))dz,

where R(z, w) is a rational function, and ϕ(z) is a poly-

nomial of degree 3 or 4. This is what you call an elliptic

integrals.
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Riemann introduced what we call “Riemann surfaces”

today, with which the integral above is written as∫
γ

ω,

where ω is a meromorphic 1-form on the Riemann surface

(algebraic curve) defined by w2 = ϕ(z). This view led to

the study of integrals over more general algebraic curves.
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Notations and conventions

◦ A graph is denoted as X = (V, E), where

V = the set of vertices,

E = the set of all oriented edges

o(e) = the origin of e ∈ E,

t(e) = the terminus of e ∈ E,

e = the inversion of e ∈ E.

s - s
o(e) t(e)

e s s
o(e)

¾

t(e)
e

Ex = {e ∈ E; o(e) = x}
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I. Abel’s Theorem in Graph Theory
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Abel-Jacobi maps in graph theory

Abel-Jacobi maps in the original sense are canonical

holomorphic mapping of algebraic varieties into certain

abelian varieties.

◦ An Abel-Jacobi map in graph theory is a canonical

harmonic function on a finite graph with values in a

certain finite abelian group, thus a purely discrete ob-

ject, introduced by R. Bacher, P. de la Harpe and T.

Nagnibeda.
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Abel-Jacobi maps in algebraic geometry

Given a non-singular complete algebraic curve V/C, we

write

Div0(V ) = {
finite∑
x∈V

axx| ax ∈ Z,
∑

ax = 0},

and let P (V ) be the subgroup of Div0(V ) consisting of

divisors associated with meromorphic functions on V . say

Prin(X) = {
∑

x

ordx(f)x| f meromorphic function}

Then define the Picard variety

Pic(V ) := Div0(V )/Prin(V ).

The Abel-Jacobi map Φ : V −→ Pic(V ) is defined by

Φ(x) = [x − x0] ∈ Div0(V )/Prin(V ).
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Abel-Jacobi maps for finite graphs

Let X = (V, E) be a finite graph, where V is the set of

vertices, and E is the set of all oriented edges. Define

Div0(X) = {
∑
x∈V

axx ∈ C0(X, Z)|
∑

x

ax = 0}

Prin(X) = ∂∂∗(C0(X, Z)
)

where ∂ : C1(X, Z) −→ C0(X, Z) is the boundary opera-

tor of chain groups, and ∂∗ is the adjoint of ∂ with respect

to the inner products on C0(X, R) and C1(X, R)

x · y =

{
1 (x = y)

0 (x ̸= y)
e · e′ =


1 (e = e′)
−1 (e = e′)
0 (otherwise),
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The Picard group is defined as

Pic(X)) = Div0(X)/Prin(X)

Pic(X) is a finite abelian group whose order is κ(X),

the number of spanning trees of X (the tree number).

The Abel-Jacobi map Φ : V −→ Pic(X) is defined as

Φ(x) = [x − x0].

Usually the tree number is very big. For instance, κ(Kn) =

nn−2 (Cayley, 1839). Therefore the Picard group is very

big finite abelian group.
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Why putting Prin(X) = ∂∂∗(C0(X, Z)
)

?

In the case of algebraic curves,

∆ log |f | = 2π
∑

ordp(f)δp

for a meromorphic function f .

If we identify C0(X, R) wit C0(X, R), the group of 0-

cochains (= the space of functions on the set of vertices),

then

Prin(X) = ∆
(
C0(X, Z)

)
,

where ∆ is the combinatorial Laplacian defined as

∆f(x) = d∗df(x) = −
∑
e∈Ex

f(te) + (deg x)f(x)

= −
∑
e∈Ex

(
f(te) − f(oe)

)
.
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Φ is a harmonic function in the sense that

∆Φ(x) =
∑
e∈Ex

[Φ(t(e)) − Φ(o(e))] = 0

Abel-Jacobi maps have the universal property: If ϕ :

V −→ G be a harmonic function with values in a finite

abelian group G, then there exists a unique homomor-

phism f : Pic(X) −→ G such that f ◦ Φ = ϕ.
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Albanese maps in graph theory

Albanese maps in the original sense are also canonical

holomorphic mapping of algebraic varieties into certain

abelian varieties.

◦ An Albanese map in graph thoery is a canonical

harmonic map from a finite graph (as a 1-dimensional

singular space) into a certain flat torus.

[4] M. Kotani and T. Sunada, Standard realizations of

crystal lattices via harmonic maps, Trans. A.M.S. 353

(2000), 1-20.
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Albanese maps in algebraic geometry

Given a non-singular complete algebraic curve V/C, we

let

A(V ) = (Ω1(V ))∗/H1(V, Z),

where

Ω1(V ) = the space of holomorphic 1-forms on V ,

and H1(V, Z) is considered as the subgroup of (Ω1(V ))∗

by using the paring map

([α], ω) =

∫
α

ω.

A(V ) is a complex torus, and called the Albanese torus.
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The Albanese map Φ is a holomorphic map of V into

J(V ) defined by the paring map

(Φ(x), ω) =

∫ x

x0

ω (mod H1(V, Z)),

where

x0 ∈ V is a reference point, and

ω ∈ Ω1(V ).

The symbol “mod” implies that the linear functional ω 7→∫ x

x0
ω in the right hand side is determined only “modulo

elements in H1(V, Z)”.
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Abel’s theorem

◦ The correspondence [x − x0] 7→ Φ(x) gives an iso-

morphism of Pic(V ) onto A(M). Thus under the iden-

tification between Pic(V ) and A(M), the Abel-Jacobi

map coincides with the Albanese map.
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Albanese maps for finite graphs

Consider the flat torus (Albanese torus)

A(X) = H1(X, R)/H1(X, Z),

with the flat metric induced from the inner product on

C1(X, R).

Let Xab = (V ab, Eab) be the maximal abelian covering

graph; in other words, Xab is the covering graph over X

with the covering transformation group H1(X, Z). Let

P : C1(X, R) −→ H1(X, R) = Ker ∂ be the orthogonal

projection. Fix a reference point x0 ∈ V ab, and let c̃ =

(ẽ1, . . . , ẽn) be a path in Xab with o(c̃) = x0, t(c̃) = x.

Then put Φ̃(x0) = 0 and

Φ̃(x) = P (e1 + · · · + en) = P (e1) + · · · + P (en),

where ei ∈ E is the image of ẽi by the covering map.
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◦ Φ̃ : V ab −→ H1(X, R) is well-defined.

◦ Φ is also defined as

(Φ(x), ω) =

∫ x

x0

ω (mod H1(X, Z)),

where ω is a “harmonic form”, that is, ω ∈ C1(X, R) with

d∗ω(x) = −
∑
e∈Ex

ω(e) = 0.

◦ The map Φ̃ is harmonic in the sense that

∆Φ̃(x) = −
∑
e∈Ex

[
Φ̃(te) − Φ̃(oe)

]
= 0.

We extend Φ̃ to Xab as a piecewise linear map. Then Φ̃

satisfies Φ̃(σx) = Φ̃(x) + σ for σ ∈ H1(X, Z)
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Therefore Φ̃ induces a map Φ : X −→ H1(X, R)/H1(X, Z),

which is a harmonic map of X into the flat torus.

Φ : X −→ A(X) is said to be the Albanese map, and Φ̃

will be called the standard realization of Xab

Albanese maps have also the universal property.
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What is a relation between Abel-Jacobi maps and Al-

banese maps ?

1. The homology group H1(X, Z) is an integral lattice in

H1(X, R) in the sense that α · β ∈ Z for α, β ∈ H1(X, Z).

2. Therefore the dual lattice

H1(X, Z)# = {α ∈ H1(X, R); α·β ∈ Z for every β ∈ H1(X, Z)}
contains H1(X, Z).

3. The discrete Albanese torus A(X), a finite subgroup

of A(X), is defined to be the quotient group

H1(X, Z)#/H1(X, Z).
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Analogue of Abel’s theorem

Theorem (M. Kotani and Sunada) Φ(V ) ⊂ A(X),

and that A(X) is isomorphic to Pic(X) in a canonical

way. Under the identification A(X) = Pic(X), the

Albanese map as a map of V into A(X) coincides

with the Abel-Jacobi map.
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How to construct Φ̃

1. Take a Z-basis c1, · · · , cb of H1(X, Z), say consisting of

closed paths in X (b = rank H1(X, Z)).

2. Compute λij = ci · cj, which gives a complete descrip-

tion of the lattice group H1(X, Z) in the Euclidean space

H1(X, R). Note λij is an integer.

3. For e ∈ E, express P (e) as a linear combination of ci’s:

P (e) =
b∑

i=1

ai(e)ci.

To obtain ai(e), compute

bj(e) = P (e) · cj = e · P (cj) = e · cj ∈ Z.
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Then

bi(e) =
b∑

i=1

ai(e)λij

from which we obtain ai(e).

The map Φ̃ helps us to understand how the maximal

abel cover Xab looks like.
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Examples

Consider the graphs (A) and (B). The graph (B) is noth-

ing but the complete graph K4.
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(A) The image Φ̃(Xab) which turns out to be the dia-

mond crystal describes the arrangement of carbon atoms

(corresponding to vertices) together with their bondings

(corresponding to edges) in the diamond.

Diamond crystal (formed by a web of hexagonal rings)
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(B) The image Φ̃(Xab) is what we call the K4 crystal.

K4 crystal (formed by a web of decagonal ring)
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Properties of Φ̃

An edge e degenerates in H1(X, R) (i.e. P (e) = 0) if and

only if e is a separating edge (meaning that if we remove

e from X, then the resulting graph is not connected).
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Suppose that X has no separating edges. Then

(1) Φ̃ : V ab −→ H1(X, R) is injective.

(2) Φ̃ : Eab
x −→ H1(X, R) given by

e 7→ P (e)/∥P (e)∥
is injective for every x ∈ V ab.
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Automorphism group of the maximal abel cover

If X has no separating edges, then the automorphism

group Aut(Xab) is a crystallographic group.

A group G is said to be a crystallographic group if it

contains a subgroup H isomprphic to Zd such that

(1) H is a normal subgroup, and G/H is finite, and

(2) H is the maximal abelian sungroup of G.

H is called the maximal lattice group.

H1(X, Z) is the maximal lattice in Aut(Xab), and

the factor group Aut(Xab)/H1(X, Z) is isomorphic

to the automorphism group of X, Aut(X).
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We thus have the exact sequence:

0 → H1(X, Z) → Aut(Xab) → Aut(X) → 1.

In other words, Aut(Xab) is an extension of H1(X, Z) by

the finite group Aut(X), and hence it is determined by a

group cohomology class Θ ∈ H2
(
Aut(X), H1(X, Z)

)
.
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More explicitly, Θ is represented by the 2-cocycle θ ∈
C1

(
Aut(X), H1(X, Z)

)
defined by

θ(σ, τ ) = [cσ · σcτ · cστ ], (σ, τ ∈ Aut(X))

where cσ is a path in X joining x0, σx0.
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II. The K4 crystal –Diamond Twin–
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How special are diamond and K4 crystals ?

The diamond and K4 crystals have maximal symmetry

and the strong isotropic property.

Theorem A crystal in R3 with maximal symmetry

and strong isotropic property is either the diamond

crystal or the K4 crystal (and its mirror image).

Thus the K4 crystal is entitled to be called a diamond

twin.

Remark The K4 crystal has chirality.
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Crystals

A crystal in physical sense is a periodic arrangement

of atoms together with the bonding (depicted usually

by virtual lines) of atoms provoked by atomic force.

A crystal in mathematical sense is a 1 dimensional

figure in space with periodicity with respect to a

lattice group action by translations (thus ignoring

the physical characters of atoms and atomic forces

in a crystal which may be different one by one).
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Crystals with maximal symmetry

Definition A crystal is said to have maximal symmetry

if every automorphism of the crystal as an abstract

graph extends to a congruent transformation.

Note that every congruent transformation leaving the

crystal invariant induces an automorphism, but not vice

versa.

37



Strong isotropic property

Definition A crystal is said to have strong isotropic

property if it is regular, say, of degree n, and if, for

edges e1, · · · , en with the same origin and f1, · · · , fn

with another same origin, there exists a congruent

transformation T such that T (ei) = fi, whatever order

of edges you choose.
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History of (Re)Discovery of the K4 crystal

Chemical crystallographers have been trying to list (hy-

pothetical) crystals with small “unit” set of vertices and

small valence (degree).

◦ It is believed that the crystallographer who discovered

the crystal structure for the first time is Laves (1922).

◦ The crystal structure was called “(10,3)-a” by A. F.

Wells (unclear whether he knew Laves’s work).

A. F. Wells, Acta Cryst. 7 (1954), 535

A. F. Wells, Three Dimensional Nets and Polyhedra, Wiley

(1977).

◦ H. S. M. Coxeter called it “Laves’ graph of girth ten”

(1955).

◦ M. O’Keeffe and his colleagues discussed this structure
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in some details and renamed it “srs” (2003). The struc-

ture is realized as the silicon net in a compound of silicon

and strontium.

◦ L. Danzer discovered the structure once again around

1994.

◦ It was pinned down by Sunada in the study of random

walks on topological crystals.

T. Sunada, Notices of the AMS, 55, 208 (2008).

I called it the K4 crystal due to its mathematical rele-

vance.

◦ J. H. Conway calls the structure the “trimond” in his

book published in 2008.

The K4 crystal is still “hypothetical” as a crystal com-

posed of homo nuclei.
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Possible physical properties of the K4 crystal

Computations by a supercomputor are ongoing.

Masahiro Itoh, Tadafumi Adschiri, Yoshiyuki Kawazoe

in Tohoku University.

C: Carbon

Si: Silicon

BN: Boron-Nitrogen

Ge: Germanium

Sn: Tin

The results imply the possibility of existence for the K4

crystal structure as meta-stable ones for all cases.
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II. Standard realizations
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Topological Crystals

Consider now crystals of general dimension.

Definition A d-dimensional topological crystal (or

crystal lattice) is a regular covering graph over a finite

graph, say X0, with covering transformation group L

isomorphic to Zd. L is said to be a periodic lattice.

A periodic realization of X is a piecewise linear map

Φ : X −→ Rd such that there exists an injective ho-

momorphism ρ : L −→ Rd satisfying

(1) Φ(σx) = Φ(x) + ρ(σ),

(2) ρ(L) is a lattice group in Rd.

The image Φ(X) is regarded as a “crystal” in Rd.
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Standard realizations

Among periodic realizations of a topological crystal,

there is a “standard” one, which we shall call the standard

realizations.

The standard realization is a generalization of Φ̃ for the

Albanese map.
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The canonical homomorphism µ : H1(X0, Z) −→ L in-

duces a linear map µR : H1(X0, R) −→ L ⊗ R.

Equip L ⊗ R with the inner product induced from the

one on H1(X0, R).

Define v : C1(X0, R) −→ L⊗R by v = µR◦P (remember

that P : C1(X0, R) −→ H1(X0, R) is the projection).

Let c̃ = (ẽ1, . . . , ẽn) be a path in X with o(c̃) = x0, t(c̃) =

x. Then put Φ̃(x0) = 0 and

Φ̃(x) = v(e1 + · · · + en) = v(e1) + · · · + v(en),

where ei ∈ E is the image of ẽi by the covering map.

Φ̃ : X −→ L⊗ R = Rd is a periodic realization which we

call the standard realization.
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Energy minimizing property

The standard realization is characterized by energy min-

imizing property.

Think a crystal as a system of harmonic oscillators.

Each edge represents a harmonic oscillator whose en-

ergy is defined to be the square of its length.
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We shall define the energy of a crystal “per a unit cell”.

1. Given a bounded domain D in Rd, denote by E(D)

the sum of the energy of harmonic oscillators whose end

points are in D, and normalize it in such a way as

E0(D) =
E(D)

deg(D)1−2/dvol(D)2/d
,

where deg(D) is the sum of degree of vertices in D.
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2. Take an increasing sequence of bounded domains {Di}∞
i=1

with ∪∞
i=1Di = Rd (for example, a family of concentric

balls).

The energy of the crystal is defined as the limit

E = lim
i→∞

E0(Di).

◦ The limit exists under a mild condition on {Di}∞
i=1, and

E does not depend on the choice of {Di}∞
i=1.

◦ E is invariant under any homothetic transformation.
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Theorems

For a fixed topological crystal, the minimum of E is at-

tained by a periodic realization, which coincides with

the standard realization.

The standard realization has maximal symmetry.
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Why the standard realization has

maximal symmetry

The standard realization has a close relation with asymp-

totic behavior of random walks on a topological crystal.

“A random walker can detect the most natural way for

the topological crystal to sit in space”.

Let p(n, x, y) be the nth step transition probability for

the simple randam walk on a topological crystal X.
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Simple random walk

A simple random walk on a graph in general is the ran-

dom walk such that a particle moves in equal probability

to a nearest neighbor along an edge.

p(n, x, y) is the probability that a particle starting to

move from x is found at y after n step movement.

Note that p(n, x, y) is determined by the graph struc-

ture of X thus having nothing to do with its realization.

52



Relation between transition probabilities and

standard realizations

Let Φ : X −→ Rd be the standard realization. There

exists a positive constant C such that

C∥Φ(x) − Φ(y)∥2 = lim
n→∞ 2n

{p(n, x, x)

p(n, y, x)
+

p(n, y, y)

p(n, x, y)
− 2

}

◦ This is a consequence of the asymptotic expansion of

p(n, x, y) as n goes to infinity.

◦ This is used when we prove that the standard realization

yields a realization with maximal symmetry.
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Problem

List all crystals in Rd with the strong isotropic
property and maximal symmetry

In every dimension, there is at least one crystal with

these properties, that is, a generalization of the diamond

crystal, the standard realization of the maximal abelian

covering of the graph consisting of two vertices joined by

d + 1 multiple edges.
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Examples of 4D strongly isotropic crystals

1) 4-dimensional diamond
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2) The standard realization of the maximal abelian cov-

ering graph of the bipartite complete graph K3,3

Problem Is there a strongly isotropic crystal of degree

4 ?
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