Large Deviation Asymptotics of Heat Kernels on Periodic Manifolds Toshikazu Sunada

Department of Mathematics, Meiji University

Main Topic to be treated

Establish a long-time asymptotic of the heat kernel on a periodic manifold

The heat kernel $k(t, x, y)$ on a Riemannian manifold is the fundamental solution of the heat equation

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\Delta u & =0,\left.\quad u(t, x)\right|_{t=0}=f(x) \\
u(t, x) & =\int_{X} k(t, x, y) f(x) d x
\end{aligned}
$$

- Key Words:
periodic manifolds (infinite-fold abelian covers over closed manifolds)
Albanese maps (a special harmonic map of a periodic manifold into a Euclidean space)
large deviation (a technical term in probability)

$$
k(t, x, y)=(4 \pi t)^{-n / 2} \exp \left(-\frac{\|x-y\|^{2}}{4 t}\right)
$$

General Problen: What is the shape of the heat kernel on a general open manifold ?

Of course, it is impossible to give an exact shape in general.

There are three typical ways to explore the shape.

1. Estimates (from above and below) by a "Gaussian" function.
Naive Gaussian function :

$$
(4 \pi t)^{-m / 2} \exp \left(-\frac{d(x, y)^{2}}{4 t}\right)
$$

where $m=\operatorname{dim} X$ and $d(x, y)$ denotes the Riemannian distance between x and y.
In general, it must be replaced by more sophisticated functions.
2. Asymptotics at $t=0$: Local nature

$$
\begin{aligned}
& k(t, x, y) \sim(4 \pi t)^{-m / 2} \exp \left(-\frac{d(x, y)^{2}}{4 t}\right) \\
& \quad \times\left(a_{0}(x, y)+a_{1}(x, y) t+a_{2}(x, y) t^{2}+\ldots\right) \quad(t \downarrow 0),
\end{aligned}
$$

The nature of coefficients $a_{i}(x, y)$ is "local" in the sense that they are described by quantities defined only on a neighborhood of the shortest geodesic joining x and y.

This is roughly explained by the intuitive observation that the short time behavior of the heat diffusion on \boldsymbol{X} should be similar to the one on the Euclidean space.
3. Asymptotics at $t=\infty$: Global nature

Our interest is in asymptotics at $t=\infty$.

There are at least two kinds of asymptotics at $t=\infty$
(1) Central-limit-theorem type
(2) Large-diviation type

General Philosophy of Large Deviation Theory: It, in general, concerns the asymptotic behavior of remote tails of sequences of probability distributions

Remote tails

Example: For the heat kernel on \mathbf{R}^{n},
(1) Central-limit-theorem When $y_{t}-\sqrt{t} \xi$ is bounded, $k\left(t, x, y_{t}\right) \sim(4 \pi t)^{-n / 2} \exp \left(-\|\xi\|^{2} / 4\right) \quad(t \rightarrow \infty)$
(2) Large-diviation When $\lim _{t \rightarrow \infty}\left(y_{t}-\boldsymbol{t} \boldsymbol{\xi}\right)=\mathrm{a}$,

$$
\begin{gathered}
k\left(t, x, y_{t}\right) \sim(4 \pi t)^{-n / 2} \exp \left(-t\|\xi\|^{2} / 4\right) \\
\times \exp (\xi \cdot(x-\mathrm{a}) / 2) \\
(t \rightarrow \infty)
\end{gathered}
$$

How to formulate these asymptotics for more general Riemannian manifolds.

If one wants to establish asymptotics similar to the case of \mathbb{R}^{n}, the following questions come up:
(1) Where does a vector ξ (and a vector a) live?
(2) How do $y_{t}-\sqrt{t} \xi$ and $y_{t}-t \xi$ make sense?

The asymptotics mentioned above are generalized to the case of periodic manifolds.

Theorem Let X be a periodic manifold, and $k(t, x, y)$ be the heat kernel on X. Let $\Phi: X \longrightarrow$ \mathbb{R}^{d} be the Albanese map.
(1) Central-limit-theorem When $\Phi\left(y_{t}\right)-\sqrt{t} \xi$ is bounded,

$$
\begin{gathered}
k\left(t, x, y_{t}\right) \sim C_{1}(4 \pi t)^{-d / 2} \exp \left(-C_{2}\|\xi\|^{2} / 4\right) \\
(t \rightarrow \infty)
\end{gathered}
$$

with positive geometric constants C_{1}, C_{2}.
Note the exponent of $(4 \pi t)^{-d / 2}$ is different from the one for $(4 \pi t)^{-m / 2}$ in the short time asymptotic.
(2) Large-diviation When $\lim _{t \rightarrow \infty}\left(\Phi\left(y_{t}\right)-t \xi\right)=a$,

$$
\begin{aligned}
& k\left(t, x, y_{t}\right) \\
& \sim C(4 \pi t)^{-d / 2} \exp (-t H(\xi)) f(\pi(x)) g\left(\pi\left(y_{t}\right)\right) \\
& \times \exp \left(\omega_{0} \cdot(\Phi(x)-a)\right) \\
&(t \rightarrow \infty)
\end{aligned}
$$

with a positive constant C and a positive-valued convex function $\boldsymbol{H}(\xi)$

The terms $d, \Phi, \pi, f, g, \omega_{0}$ are explained later.

A weak version For a sequence $\left\{y_{t}\right\}_{t>0}$ in X, we have

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log k\left(t, x, y_{t}\right)=-H(\xi)
$$

provided that $\left\|\Phi\left(y_{t}\right)-t \xi\right\|$ is bounded.
The function H is an analogue of the entropy in thermodynamics.

A periodic manifold X is an abelian covering manifold of a closed Riemannian manifold, say M, with free abelian covering transformation group.
$\circ \pi: X \longrightarrow M$ is the covering map.
$\circ d$ is the rank of the covering transformation group, Γ ($\Gamma=\mathrm{Z}^{d}$).
(Remark: In general, $\boldsymbol{d} \neq \operatorname{dim} \boldsymbol{X}$)

Example (1) R^{n}. This is the Z^{n}-covering over the flat torus $\mathbf{R}^{n} / \mathbf{Z}^{n}$.
(2) The homology universal covering manifold (the maximal abelian covering manifold) of a closed manifold M. This is an abelain covering manifold with the covering transfromation group $H_{1}(M, Z)$.
(3) 2-dimensional periodic manifold given the the following figure.

X is an abelian covering of $M \Longrightarrow$

- The surjective homomorphism

$$
\rho: H_{1}(M, \mathrm{Z}) \longrightarrow \Gamma \rightarrow 0
$$

- The injective linear map

$$
{ }^{t} \rho_{\mathrm{R}}: \operatorname{Hom}(\Gamma, \mathbf{R}) \longrightarrow \boldsymbol{H}^{1}(M, \mathbf{R})
$$

$H^{1}(M, R)$ is identified with the space of harmonic 1forms, and equipped with the Hodge metric (inner product) defined by

$$
\omega \cdot \omega=\int_{M}|\omega|^{2}
$$

In this way, we equip $\operatorname{Hom}(\Gamma, R)$ (also its dual $\Gamma \otimes \mathbb{R}$) with an inner product.

The Albanese map

$$
\Phi: X \longrightarrow \Gamma \otimes R\left(=\mathbb{R}^{d}\right)
$$

is defined by

$$
\langle\omega, \Phi(x)\rangle=\int_{x_{0}}^{x} \widetilde{\omega}
$$

where

$$
\begin{aligned}
& \omega \in \operatorname{Hom}(\Gamma, \mathrm{R}) \subset H^{1}(M, \mathrm{R}), \\
& \widetilde{\omega} \text { is the lifting of } \omega \text { to } X
\end{aligned}
$$

(Note $\left.(\Gamma \otimes R)^{*}=\operatorname{Hom}(\Gamma, R)\right)$
In the term $\Phi\left(y_{t}\right)-t \xi\left(\right.$ or $\left.\Phi\left(y_{t}\right)-\sqrt{t} \xi\right), \xi$ is a vector in $\Gamma \otimes R$.

To define $\boldsymbol{H}(\xi)$, the following lemma is required.

Lemma

Let Δ_{M} be the analyst's Laplacian on M. For a vector field v and a function f, the operaotr $\Delta_{M}+$ $v+f$ has a simple eigenvalue λ_{0} with a positive valued eigenfunction.
λ_{0} will be called the Perron-Frobenius eigenvalue ($\mathrm{P}-\mathrm{F}$ eigenvalue).

For $\omega \in \operatorname{Hom}(\Gamma, R)$, define the operator D_{ω} by

$$
D_{\omega} f=\Delta_{M} f+2\langle\omega, d f\rangle+|\omega|^{2} f
$$

and let $\lambda_{0}(\omega)$ be the P-F eigenvalue of D_{ω}.

- $\lambda_{0}(-\omega)=\lambda_{0}(\omega)$

Lemma λ_{0} is an analytic function on $\operatorname{Hom}(\Gamma, R)$ with

Hess $\lambda_{0}>0 \quad$ (everywhere)

Define the gradient map

$$
\nabla \lambda_{0}: \operatorname{Hom}(\Gamma, R) \longrightarrow \Gamma \otimes R
$$

by

$$
\left(\nabla_{v} \lambda_{0}\right)(\omega)=\left.\frac{d}{d t}\right|_{t=0} \lambda_{0}(\omega+t v)
$$

Lemma $\nabla \boldsymbol{\lambda}_{0}$ is a diffeomorphism.
The element ω_{0} is defined as an element of $\operatorname{Hom}(\Gamma, R)$ with

$$
\nabla \lambda_{0}\left(\omega_{0}\right)=\xi
$$

The case of maximal abelian covering manifolds

λ_{0} is a convex function on $H^{1}(M, \mathrm{R})$.
The gradient map $\nabla \lambda_{0}$ is a diffeomorphism of $H^{1}(M, \mathrm{R})$ onto $H_{1}(M, \mathrm{R})$.

Definition of $\boldsymbol{H}(\boldsymbol{\xi})$

$$
H(\xi)=\sup _{\omega}\left(\langle\xi, \omega\rangle-\lambda_{0}(\omega)\right)
$$

This is the Legendre-Fenchel transform.
Note that the supremum in the right hand side is attained by ω_{0} with $\nabla \lambda_{0}\left(\omega_{0}\right)=\xi$, and hence

$$
H(\xi)=\left\langle\xi, \omega_{0}\right\rangle-\lambda_{0}\left(\omega_{0}\right)
$$

The functions f, g on M are positive valued eigenfunctions of $D_{\omega_{0}}$ and $D_{-\omega_{0}}$ for the P-F eigenvalue $\lambda_{0}\left(\omega_{0}\right)=$ $\lambda_{0}\left(-\omega_{0}\right)$:

$$
D_{\omega_{0}} f=\lambda_{0}\left(\omega_{0}\right) f, \quad D_{-\omega_{0}} g=\lambda_{0}\left(-\omega_{0}\right) g
$$

f, g are normalized as

$$
\int_{M} f g=1
$$

Every terms in Theorem have been defined.

- Rough Idea

Theorem (1) is a direct consequence of the local central limit theorem.

$$
\begin{aligned}
& \lim _{t \uparrow \infty}\left((4 \pi t)^{d / 2} k(t, x, y)\right. \\
& \left.\quad-C(X) \exp \left(-\frac{\operatorname{vol}(M)}{4 t}\|\Phi(x)-\Phi(y)\|^{2}\right)\right)=0
\end{aligned}
$$

uniformly for all $x, y \in X$.
M. Kotani and T. Sunada, Albanese maps and off diagonal long time asymptotics for the heat kernel, Comm. Math. Phys., 209(2000), 633-670.

The idea for Theorem (2).

- Define the function u on X by

$$
u(x)=\left\langle\omega_{0}, \Phi(x)\right\rangle=\int_{x_{0}}^{x} \widetilde{\omega}_{0} .
$$

- Let \widetilde{D}_{0} be the lifting of $D_{0}=D_{\omega_{0}}$ to X.
- Let $k_{0}(t, x, y)$ be the kernel function of $e^{t \widetilde{D}_{0}}$ on X. Since $\widetilde{D}_{0}=e^{-u} \Delta_{X} e^{u}$, we have

$$
\begin{aligned}
k(t, x, y) & =k_{0}(t, x, y) \frac{e^{u(x)}}{e^{u(y)}} \\
& =k_{0}(t, x, y) \exp \left\langle\omega_{0},(\Phi(x)-\Phi(x))\right\rangle
\end{aligned}
$$

- Look at the direct integral decomposition

$$
\widetilde{D}_{0}=\int_{\widehat{\Gamma}}^{\oplus}\left(D_{0}\right)_{\chi} d \chi
$$

$\left(D_{0}\right)_{\chi}$ is the operator, induced from D_{0}, acting in sections of the line bundle associated with χ.

- Identify the group of unitary characters $\widehat{\Gamma}$ with the torus $\operatorname{Hom}(\Gamma, R) / \operatorname{Hom}(\Gamma, Z)$ via the correspondence

$$
\omega \Longleftrightarrow \chi(\cdot)=\exp 2 \pi \sqrt{-1} \int \omega
$$

$\circ \operatorname{Let} k_{\omega}(t, p, q)$ be the kernel function of $\exp \left(t D_{\omega_{0}+2 \pi \sqrt{-1} \omega}\right)$ on M. Observe that $D_{\omega_{0}+2 \pi \sqrt{-1} \omega}$ is unitarily equivalent to $\left(D_{0}\right)_{\chi}$, and

$$
\begin{aligned}
k_{0}(t, x, y)= & \int_{\mathrm{Hom}(\Gamma, \mathrm{R}) / \operatorname{Hom}(\Gamma, \mathrm{Z})} k_{\omega}(t, \pi(x), \pi(y)) \\
& \exp \langle\omega, \Phi(x)-\Phi(y)\rangle d \omega
\end{aligned}
$$

- $D_{\omega_{0}+2 \pi \sqrt{-1} \omega}$ has a simple eigenvalue $\lambda_{0}\left(\omega_{0}+2 \pi \sqrt{-1} \omega\right)$ as far as ω is in a small neiborhood $U(0)$ of 0 .
- We have the expression

$$
\exp \left(t D_{\omega_{0}+2 \pi \sqrt{-1} \omega}\right)=e^{t \lambda_{0}\left(\omega_{0}+2 \pi \sqrt{-1} \omega\right)} P_{\omega}+Q_{\omega}(t)
$$

such that the kernel function of P_{ω} is $f_{\omega}(p) \overline{g_{\omega}(q)}$ where

$$
\begin{aligned}
& D_{\omega_{0}+2 \pi \sqrt{-1} \omega} f_{\omega}=\lambda_{0}\left(\omega_{0}+2 \pi \sqrt{-1} \omega\right) f_{\omega} \\
& { }^{t} D_{\omega_{0}+2 \pi \sqrt{-1} \omega} g_{\omega}=\lambda_{0}\left(\omega_{0}+2 \pi \sqrt{-1} \omega\right) g_{\omega} \\
& \int_{M} f_{\omega} \overline{g_{\omega}}=1
\end{aligned}
$$

and the kernel function $q(t, p, q)$ of $Q_{\omega}(t)$ satisfies

$$
|q(t, p, q)| \leq e^{c t} \quad\left(0<c<\lambda_{0}\left(\omega_{0}\right)\right)
$$

- Put

$$
\varphi(\omega)=\lambda\left(\omega_{0}+\omega\right)-\left\langle\xi, \omega_{0}+\omega\right\rangle+H(\xi)
$$

Note

$$
\begin{aligned}
& \varphi(0)=0 \\
& \nabla \varphi(0)=0 \\
& \operatorname{Hess}_{0} \varphi=\operatorname{Hess}_{\omega_{0}} \lambda_{0}>0
\end{aligned}
$$

- We find

$$
\begin{aligned}
k_{0}\left(t, x, y_{t}\right) \sim & e^{-t H(\xi)} \int_{U(0)} \exp (t \varphi(2 \pi \sqrt{-1} \omega)) \\
& \times \exp \left(t\left\langle\xi, \omega_{0}+2 \pi \sqrt{-1} \omega\right\rangle\right) \\
& \times f_{\omega}(\pi(x)) \overline{g_{\omega}\left(\pi\left(y_{t}\right)\right)} \\
& \times \exp (\langle\omega, \Phi(x)-\Phi(y)\rangle) d \omega
\end{aligned}
$$

Apply the Laplace method to obtain Theorem (2).
Problem: Formulate large deviation asymptotics in the case of negatively curved spaces.

Discrete Analogue

A similar idea may be applied to the asymptotics of the transition probability of random walks on a crystal lattices, an abelian covering graph of finite graphs with a free abelian covering transformation group.

Replacement

$\boldsymbol{X} \Longrightarrow$ crystal lattice,
$k(t, x, y) \Longrightarrow p(n, x, y)$ (n-step transition probability), (Brownian motion \Longrightarrow (simple) randoma walk),
$e^{t \Delta} \Longrightarrow L^{n}(n=0,1,2, \ldots)$,
$\lambda_{0} \Longrightarrow \log \mu_{0}$,
$\Phi \Longrightarrow$ standard realization
where L is the transition operator, and μ_{0} is the maximal positive eigenvalue.

The formulation of theorems and proofs can be done in a parallel way as the continuous case.
M. Kotani and T. Sunada, Large deviation and the tangent cone at infinity of a crystal lattice, Math. Z., 254 (2006), 837-870.

For the large deviation asymptotics, a difference is in the fact that Image $\left(\nabla \lambda_{0}\right)$ is the interior of a convex polyhedron D in $\Gamma \otimes R$ (a consequence of "finite propagation speed" for random walks).

In the case of the maximal abelian covering graphs over a finite graph X_{0}, the image of the gradient map $\nabla \lambda_{0}$: $H^{1}\left(X_{0}, R\right) \longrightarrow H_{1}\left(X_{0}, R\right)$ coincides with the unit ball in
$H_{1}\left(X_{0}, R\right)$ with respect to the ℓ^{1}-norm.

Given $\xi \in \operatorname{Int} D$, we have a large deviation asymptotic for $p\left(n, x, y_{n}\right)$ for y_{n} with $\lim _{n \rightarrow \infty}\left(\Phi\left(y_{n}\right)-n \xi\right)=a$.

A weak version of large deviation asymptotics: If $\left\|\Phi\left(y_{n}\right)-n \xi\right\|$ is bounded, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log p\left(n, x, y_{n}\right)=-H(\xi) .
$$

Open problem
What about for $\xi \in \partial D$?

