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Main Topic to be treated

Establish a long-time asymptotic of the heat
kernel on a periodic manifold

The heat kernel k(t, x, y) on a Riemannian man-
ifold is the fundamental solution of the heat
equation

∂u

∂t
+ ∆u = 0, u(t, x)

∣∣
t=0

= f(x),

u(t, x) =

∫
X

k(t, x, y)f(x)dx
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◦ Key Words:

periodic manifolds (infinite-fold abelian covers
over closed manifolds)

Albanese maps (a special harmonic map of a
periodic manifold into a Euclidean space)

large deviation (a technical term in probabil-
ity)
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The heat kernel on Rn

k(t, x, y) = (4πt)−n/2 exp
(

− ∥x − y∥2

4t

)
General Problen: What is the shape of the

heat kernel on a general open manifold ?

Of course, it is impossible to give an exact
shape in general.
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There are three typical ways to explore the shape.

1. Estimates (from above and below) by a “Gaussian”

function.

Naive Gaussian function :

(4πt)−m/2 exp
(−d(x, y)2

4t

)
where m = dim X and d(x, y) denotes the Riemannian

distance between x and y.

In general, it must be replaced by more sophisticated

functions.

2. Asymptotics at t = 0 : Local nature

k(t, x, y) ∼ (4πt)−m/2 exp
(−d(x, y)2

4t

)
× (a0(x, y) + a1(x, y)t + a2(x, y)t2 + . . . ) (t ↓ 0),
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The nature of coefficients ai(x, y) is “local” in the sense

that they are described by quantities defined only on a

neighborhood of the shortest geodesic joining x and y.

This is roughly explained by the intuitive observation

that the short time behavior of the heat diffusion on X

should be similar to the one on the Euclidean space.

3. Asymptotics at t = ∞ : Global nature

Our interest is in asymptotics at t = ∞.
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There are at least two kinds of asymptotics at
t = ∞
(1) Central-limit-theorem type

(2) Large-diviation type

General Philosophy of Large Deviation The-
ory: It, in general, concerns the asymptotic be-
havior of remote tails of sequences of probability
distributions
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Remote tails
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Example: For the heat kernel on Rn,

(1) Central-limit-theorem When yt − √
tξ is

bounded,

k(t, x, yt) ∼ (4πt)−n/2 exp(−∥ξ∥2/4) (t → ∞)

(2) Large-diviation When lim
t→∞(yt − tξ) = a,

k(t, x, yt) ∼ (4πt)−n/2 exp(−t∥ξ∥2/4)

× exp
(
ξ · (x − a)/2

)
(t → ∞)
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How to formulate these asymptotics for more
general Riemannian manifolds.

If one wants to establish asymptotics similar to the case

of Rn, the following questions come up:

(1) Where does a vector ξ (and a vector a) live ?

(2) How do yt − √
tξ and yt − tξ make sense ?
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The asymptotics mentioned above are gener-
alized to the case of periodic manifolds.

Theorem Let X be a periodic manifold, and

k(t, x, y) be the heat kernel on X. Let Φ : X −→
Rd be the Albanese map.

(1) Central-limit-theorem When Φ(yt) − √
tξ is

bounded,

k(t, x, yt) ∼ C1(4πt)−d/2 exp(−C2∥ξ∥2/4)

(t → ∞)

with positive geometric constants C1, C2.

Note the exponent of (4πt)−d/2 is different from the one for (4πt)−m/2

in the short time asymptotic.
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(2) Large-diviation When lim
t→∞(Φ(yt) − tξ) = a,

k(t, x, yt)

∼ C(4πt)−d/2 exp(−tH(ξ))f
(
π(x)

)
g
(
π(yt)

)
× exp

(
ω0 · (

Φ(x) − a
))

(t → ∞)

with a positive constant C and a positive-valued

convex function H(ξ)

The terms d, Φ, π, f, g, ω0 are explained later.
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A weak version For a sequence {yt}t>0 in X,

we have

lim
t→∞

1

t
log k(t, x, yt) = −H(ξ)

provided that ∥Φ(yt) − tξ∥ is bounded.

The function H is an analogue of the entropy
in thermodynamics.
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A periodic manifold X is an abelian covering
manifold of a closed Riemannian manifold, say
M , with free abelian covering transformation
group.

◦ π : X −→ M is the covering map.

◦ d is the rank of the covering transformation group, Γ

(Γ = Zd).

(Remark: In general, d ̸= dim X)
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Example (1) Rn. This is the Zn-covering over the flat

torus Rn/Zn.

(2) The homology universal covering manifold (the max-

imal abelian covering manifold) of a closed manifold M .

This is an abelain covering manifold with the covering

transfromation group H1(M, Z).

(3) 2-dimensional periodic manifold given the the fol-

lowing figure.
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X is an abelian covering of M =⇒
◦ The surjective homomorphism

ρ : H1(M, Z) −→ Γ → 0

◦ The injective linear map

tρR : Hom(Γ, R) −→ H1(M, R)

H1(M, R) is identified with the space of harmonic 1-

forms, and equipped with the Hodge metric (inner prod-

uct) defined by

ω · ω =

∫
M

|ω|2

In this way, we equip Hom(Γ, R) (also its dual Γ ⊗ R)

with an inner product.

17



The Albanese map

Φ : X −→ Γ ⊗ R(= Rd)

is defined by

〈ω, Φ(x)〉 =

∫ x

x0

ω̃

where

ω ∈ Hom(Γ, R) ⊂ H1(M, R),

ω̃ is the lifting of ω to X

(Note (Γ ⊗ R)∗ = Hom(Γ, R))

In the term Φ(yt) − tξ (or Φ(yt) − √
tξ), ξ is a vector in

Γ ⊗ R.
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To define H(ξ), the following lemma is required.

Lemma
Let ∆M be the analyst’s Laplacian on M . For a

vector field v and a function f , the operaotr ∆M +

v + f has a simple eigenvalue λ0 with a positive

valued eigenfunction.

λ0 will be called the Perron-Frobenius eigenvalue

(P-F eigenvalue).
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For ω ∈ Hom(Γ, R), define the operator Dω by

Dωf = ∆Mf + 2〈ω, df〉 + |ω|2f
and let λ0(ω) be the P-F eigenvalue of Dω.

◦ λ0(−ω) = λ0(ω)

Lemma λ0 is an analytic function on
Hom(Γ, R) with

Hess λ0 > 0 (everywhere)
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Define the gradient map

∇λ0 : Hom(Γ, R) −→ Γ ⊗ R

by

(∇vλ0)(ω) =
d

dt

∣∣∣
t=0

λ0(ω + tv)

Lemma ∇λ0 is a diffeomorphism.

The element ω0 is defined as an element of Hom(Γ, R)

with

∇λ0(ω0) = ξ
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The case of maximal abelian covering manifolds

λ0 is a convex function on H1(M, R).

The gradient map ∇λ0 is a diffeomorphism of
H1(M, R) onto H1(M, R).
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Definition of H(ξ)

H(ξ) = sup
ω

(〈ξ, ω〉 − λ0(ω))

This is the Legendre-Fenchel transform.

Note that the supremum in the right hand side is at-

tained by ω0 with ∇λ0(ω0) = ξ, and hence

H(ξ) = 〈ξ, ω0〉 − λ0(ω0)
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The functions f, g on M are positive valued eigenfunc-

tions of Dω0 and D−ω0 for the P-F eigenvalue λ0(ω0) =

λ0(−ω0):

Dω0f = λ0(ω0)f, D−ω0g = λ0(−ω0)g

f, g are normalized as∫
M

fg = 1

Every terms in Theorem have been de-
fined.
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◦ Rough Idea

Theorem (1) is a direct consequence of the lo-
cal central limit theorem.

lim
t↑∞

(
(4πt)d/2k(t, x, y)

−C(X) exp
(−vol(M)

4t
∥Φ(x) − Φ(y)∥2

))
= 0,

uniformly for all x, y ∈ X.

M. Kotani and T. Sunada, Albanese maps and off diagonal

long time asymptotics for the heat kernel, Comm. Math. Phys.,

209(2000), 633-670.
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The idea for Theorem (2).

◦ Define the function u on X by

u(x) = 〈ω0, Φ(x)〉 =

∫ x

x0

ω̃0.

◦ Let D̃0 be the lifting of D0 = Dω0 to X.

◦ Let k0(t, x, y) be the kernel function of etD̃0 on X.

Since D̃0 = e−u∆Xeu, we have

k(t, x, y) = k0(t, x, y)
eu(x)

eu(y)

= k0(t, x, y) exp〈ω0, (Φ(x) − Φ(x))〉
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◦ Look at the direct integral decomposition

D̃0 =

∫ ⊕

Γ̂

(D0)χ dχ

(D0)χ is the operator, induced from D0, acting in sec-

tions of the line bundle associated with χ.

◦ Identify the group of unitary characters Γ̂ with the

torus Hom(Γ, R)/Hom(Γ, Z) via the correspondence

ω ⇐⇒ χ(·) = exp 2π
√−1

∫
·
ω
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◦ Letkω(t, p, q) be the kernel function of exp
(
tDω0+2π

√−1ω

)
on M . Observe that Dω0+2π

√−1ω is unitarily equivalent to

(D0)χ, and

k0(t, x, y) =

∫
Hom(Γ,R)/Hom(Γ,Z)

kω(t, π(x), π(y))

exp〈ω, Φ(x) − Φ(y)〉dω

◦ Dω0+2π
√−1ω has a simple eigenvalue λ0(ω0 +2π

√−1ω)

as far as ω is in a small neiborhood U(0) of 0.
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◦ We have the expression

exp
(
tDω0+2π

√−1ω

)
= etλ0(ω0+2π

√−1ω)Pω + Qω(t)

such that the kernel function of Pω is fω(p)gω(q) where

Dω0+2π
√−1ωfω = λ0(ω0 + 2π

√−1ω)fω,
tDω0+2π

√−1ωgω = λ0(ω0 + 2π
√−1ω)gω,∫

M

fωgω = 1

and the kernel function q(t, p, q) of Qω(t) satisfies

|q(t, p, q)| ≤ ect (0 < c < λ0(ω0))
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◦ Put

ϕ(ω) = λ(ω0 + ω) − 〈ξ, ω0 + ω〉 + H(ξ)

Note

ϕ(0) = 0,

∇ϕ(0) = 0,

Hess0ϕ = Hessω0λ0 > 0

◦ We find

k0(t, x, yt) ∼ e−tH(ξ)

∫
U(0)

exp(tϕ(2π
√−1ω))

× exp(t〈ξ, ω0 + 2π
√−1ω〉)

×fω(π(x))gω(π(yt))

× exp(〈ω, Φ(x) − Φ(y)〉)dω
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Apply the Laplace method to obtain Theorem (2).

Problem: Formulate large deviation asymptotics in the

case of negatively curved spaces.
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Discrete Analogue

A similar idea may be applied to the asymptotics of

the transition probability of random walks on a crystal

lattices, an abelian covering graph of finite graphs with a

free abelian covering transformation group.
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Replacement

X =⇒ crystal lattice,

k(t, x, y) =⇒ p(n, x, y) (n-step transition probability),

(Brownian motion =⇒ (simple) randoma walk),

et∆ =⇒ Ln (n = 0, 1, 2, . . .),

λ0 =⇒ log µ0,

Φ =⇒ standard realization

where L is the transition operator, and µ0 is the maximal positive
eigenvalue.

The formulation of theorems and proofs can be done in a parallel
way as the continuous case.

M. Kotani and T. Sunada, Large deviation and the tangent cone at infinity
of a crystal lattice, Math. Z., 254 (2006), 837-870.
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For the large deviation asymptotics, a difference is in

the fact that Image(∇λ0) is the interior of a convex poly-

hedron D in Γ ⊗ R (a consequence of “finite propagation

speed” for random walks).

In the case of the maximal abelian covering graphs over

a finite graph X0, the image of the gradient map ∇λ0 :

H1(X0, R) −→ H1(X0, R) coincides with the unit ball in
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H1(X0, R) with respect to the ℓ1-norm.
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Given ξ ∈ Int D, we have a large deviation asymptotic

for p(n, x, yn) for yn with limn→∞(Φ(yn) − nξ) = a.

A weak version of large deviation asymptotics:

If ∥Φ(yn) − nξ∥ is bounded, then

lim
n→∞

1

n
log p(n, x, yn) = −H(ξ).

Open problem

What about for ξ ∈ ∂D ?
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