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Motivation

O’Keefe et al. discovered place cells in the 70’s (2014 Nobel Prize)

Place cells encode where an animal is spacially by firing when
the animal is in a certain region (approximated by a convex open
set).

More generally, consider a collection U = {U1, ...,Un} of open
sets in Rd , corresponding to locations where a neuron will fire.

A neural code describes the sets of neurons that can fire
simultaneously, or the intersections of the sets in U .
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What is a Neural Code?

Definition

A neural code C is a subset of 2[n], and each σ ∈ C is called a
codeword. Codewords that are maximal with respect to set inclusion
are called maximal.

Example

An example of a neural code is C = {∅, {1, 2, 3}, {1, 2}{1, 4}}.For
brevity we write C = {∅, 123, 12, 14}. 123 and 14 are the maximal
codewords.

We will talk about intersections and size of codewords in the set
theoretic sense.
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Realization of Neural Codes

Definition

A code C is realized by open sets U1, ...,Un if
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Figure 1: A realization of the code
C = {123, 234, 12, 23, 13, 24, 34, 1, 2, 3, 4, ∅}
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Convexity

Definition

A neural code is convex if it can be realized by convex open sets
U1, ...,Un.

U1 ∩ U2 U1 ∩ U3

Figure 2: (Nonexample): The code C = {12, 13, ∅} is not convex.
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The Big Question:

Question

Given a neural code C, is there a way to determine whether C is
convex or not?

There exist conditions that imply convexity

There exist conditions that imply non-convexity

But there are no known necessary and sufficient conditions for
convexity
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Good cover codes

A similar (and strictly weaker) property than convexity is that of
being a good cover code.

Definition

A neural code C is said to be a good-cover code if C can be
realized by contractible open sets U such that any intersection of sets
in U is also contractible.
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Simplicial Complexes

Definition

An abstract simplicial complex on n vertices is a subset of 2[n]

that is closed under taking subsets. We can topologically realize any
simplicial complex (on n vertices) as a subset of the n-simplex in
Euclidean space.

Definition

Given C, we define ∆(C) to be the smallest simplicial complex
containing C.
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Simplicial Complexes
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Figure 3: The code C = {12, 23, 1, 2, 3, ∅} is convex and a good-cover
code. Its simplicial complex, ∆(C), is realized below.
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The link of a simplicial complex

Definition

The link of a face σ in a simplicial complex ∆ is denoted as

Lkσ(∆) = {τ ∈ ∆ | σ ∩ τ = ∅ and σ ∪ τ ∈ ∆}.

Figure 4: The link of the green vertex in the simplicial complex on the
left is shown in blue.
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Mandatory Codewords

Definition

Given a simplicial complex ∆, we define M(∆) to be the set of all
faces σ that are intersections of maximal faces of ∆ and where
Lkσ(∆) is not contractible. M(∆) is called the set of mandatory
codewords for any C such that ∆(C) = ∆.

The definition is motivated from that fact (not obvious) that any
code that does not contain all of its mandatory codewords cannot be
convex (or even a good cover code).

Definition

A neural code C is said to be locally good if it contains all mandatory
codewords.
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What we already know

Let C be a neural code. We have the following results:

Theorem (Curto et al.)

If C is a good cover code, C is locally good

Note that it follows that if C is convex, then C is locally good.

Theorem (Leincamper et al.)

There exists a code that is locally good but not convex.
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Locally good = good cover

Theorem (C.)

A code C is locally good if and only if C is a good-cover code.

This equates being locally good (which is a strictly local property)
with being a good cover code (which means our code has a global
“almost convex” realization).
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Decision problems for neural codes

One of our main goals to find a characterization for when a neural
code is convex. However, is this even possible?

Theorem (C.)

The problem of deciding whether a neural code is locally good is
undecidable.

Proof.

Deciding whether a simplicial complex is contractible is
undecidable.

Outline of reduction: build a neural code based on any simplicial
complex so that the code is locally good iff our complex is
contractible.
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A new type of obstruction

Liencamper et al. gave the first counterexample for a neural code
that is locally good but not convex. However, the counterexample in
question had two alternative ways to resolve the “obstruction.”

Theorem (C.)

There exists a locally good nonconvex code C where |∆(C)− C| = 1.

Because convexity is a monotone property for neural codes with the
same simplicial complex, this can be generalized to a new kind of
local obstruction.
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Future work

The following are several unresolved problems that are closely related
to what we have done:

We say a code is k-sparse if for all σ ∈ C, |σ| ≤ k . Are 3-sparse
locally good codes convex? (yes for 2, no for 4)

Is convexity decidable? If so then what is its complexity?

Finding a necessary and sufficient criterion for convexity.
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