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Preliminaries

Definition

f is an n-variate (n + k)-nomial if f ∈ C[x1, ...xn] is of the form

f =
n+k∑
i=1

cix
ai for ci 6= 0. We call A = {a1, ..., an+k} ⊂ Zn the

support of f.

Definition

The A-discriminant variety of an n-variate (n + k)-nomial with
support A = {a1, ..., an+k} ⊂ Zn is defined as the closure of:

∇A = (c1, ...cn+k) ∈ Pn+k−1
C :

∃ζ ∈ (Cn)∗ with f (ζ) = 0, ∂f∂xi (ζ) = 0 for all i ∈ {1, ..., n}
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Parametrizing the A-discriminant variety

How do we efficiently compute the A-discriminant variety?

For family F with support A = {a1, ..., an+k}, we define an
(n + 1)× (n + k) matrix

Â =

(
1 · · · 1
a1 · · · an+k

)

Define corresponding (n + k)× (k − 1) matrix B whose
columns form a basis of the right null of Â:

B =

 b1
...

bn+k
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Horn Kapranov Uniformization

Theorem

For family F with Â and B defined as on previous slide, ∇A can be
parametrized in P(C)n+k−1 as the closure of the following:

ϕ(∇A) = {(b1 · λ)ta1 : · · · : (bn+k · λ)tan+k |λ ∈ P(C)k−2}

Also we can reduce ϕ to Rk−1 as follows:

ϕ(∇A) = {BT log |Bλ| | λ ∈ P(C)k−2}.

note: ϕ(∇A) also induces a map from F into Rk−1. Varying the
coefficients of a polynomial varies the image of the polynomial
under this map.
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Relevance of the A-discriminant (part I)

Definition

If ϕ(∇A) denotes the reduced A-discriminant variety, then a
chamber of ϕ(∇A) is a connected component of the complement
of ϕ(∇A) in Rk−1

Fact

If f , g ∈ F correspond to points in the same chamber of ϕ(∇A),
then their real zero sets are isotopic.
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Relevance of the A-discriminant (part II)

Definition

In the setting of bivariate pentanomials, a chamber of ϕ(∇A) is an
outer chamber if its area is infinite and an inner chamber if its area
is finite.

Fact

The real zero sets of polynomials in the outer chambers can be
completely characterized combinatorially using Viro’s method.
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Extended Example

F = {1 + x + y + ax4y + bxy 4}

Figure: Reduced A-discriminant
amoeba for F

Figure: Quadrant 4 (a, b < 0) of
unfolded A-discriminant amoeba
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Extended Example

F(−,−) = {1 + x + y − |a|x4y − |b|xy4}

BLACK = ’+’, RED=’-’

Figure: Signed Newton polygon for
F(−,−) Figure: Expanded signed Newton

polygon for F(−,−)
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Viro diagrafor F(−,−) based on various triangulations

We can use Viro diagrams to completely categorize the topological
types of polynomials in the outer chambers.
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What about the inner chambers?

Figure: Quadrant 4 (a, b < 0) of
unfolded A-discriminant amoeba
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Main Theorem

Let F be a family of bivariate pentanomials of the following form
(where αi , βi ∈ Z are fixed):

F = 1 + x + y + axα1yα2 + bxβ1yβ2

Theorem

Given f , g ∈ F lying in adjacent chambers of the reduced signed
A-discriminant amoeba of F , Non(f ) = Non(g) and
|Comp(f )− Comp(g)| ≤ 1.

* Comp(f) (resp. Non(f)) denotes the number of compact (resp.
non-compact) connected components in the real zero set of f
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Changes in zero set crossing A-discriminant

Local Extremum

→ →

Saddle

→ →
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Outline of Proof

Consider family

F = 1 + x + y + axα1yα2 + bxβ1yβ2

1 Given a polynomial f on the boundary between two chambers
of the A-discriminant for F , there exists constant ε such that
f + ε and f − ε lie in opposite chambers.

2 We can ensure that f has exactly one degenerate root and
that at that root, the surface defined by f (x , y) attains either
a local extremum or a saddle point.

3 Assuming that ε is sufficiently small, the cross sections of the
surface f (x , y) at f (x , y) = ±ε differ in number of (compact)
connected components by at most 1.
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Another look at the signed reduced A-discriminant

Signed reduced A-discriminant for

F = {1 + x + y + ax4y + bxy4}

ϕ(−,+) ϕ(+,+)

ϕ(−,−) ϕ(+,−)
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Another look at the signed reduced A-discriminant

Properties of the signed reduced A-discriminant:

Undefined at λ ∈ Pk−1 for which λ · bi = 0 for some row bi of
the B matrix - here ϕ ’blows up’ to infinity.

For a bivariate pentanomial, we have (at most) 5 connected
components partitioned between 4 quadrants.
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Another look at the signed reduced A-discriminant

Lemma

At most 3 connected components of the reduced signed
A-discriminant may lie in any given quadrant

Lemma

The maximum ’depth’ of a chamber in the signed reduced
A-discriminant is 3.
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An Extremal Example

In the case with 3 components in a single quadrant, and 2 cusps
(the maximum), the configuration of curves will look something
like the following:
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1
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Bringing it All Together

Theorem

Given a bivariate polynomial f in a family of the form

F = {1 + x + y + axα1yα2 + bxβ1yβ2 : ai , bi ∈ Z≥0},

Comp(f ) ≤ 3

Tot(f ) ≤ 7.
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Some Final Remarks

Remark

We are unsure whether the bound Comp(f ) ≤ 3 is sharp - finding
examples with multiple compact connected components would be a
relevent pursuit.

Remark

It is likely that with some working out of subtleties, our approach
could give similar bounds for arbitary families of bivariate
pentanomials.
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