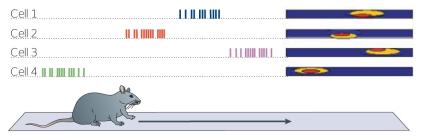
Gröbner Bases and the Neural Ideal

Jessica Liu

Bard College

July 20, 2016

Place cells are neurons that encode spatial information.



We can describe the activity of n with binary strings of length n.

- 1 denotes a firing neuron
- 0 denotes a silent neuron

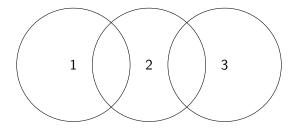
A neural code

Definition

Given a set of neurons labeled $\{1, ..., n\}$, a **neural code** on *n* neurons is a set of binary strings $C \subset \{0, 1\}^n$.

Example

Let us consider the following code on 3 neurons: $C = \{100, 110, 010, 011, 001\}$



Ideals and Varieties

Definition

Ideals: Let *R* be a commutative ring. A subset $I \subset R$ is an **ideal** of *R* if it has the following properties:

- **1** I is a subgroup of R under addition.
- **2** If $a \in I$, then $ra \in I$ for all $r \in R$.

An ideal *I* is said to be **generated** by a set *A*, and we write $I = \langle A \rangle$, if *I* is the set of all finite combinations of elements of *A* with coefficients in *R*.

Definition

Let $J \subset \mathbb{F}_2[x_1, \ldots, x_n]$ be an ideal, and define the variety

 $V(J) = \{ v \in \{0,1\}^n | f(v) = 0 \text{ for all } f \in J \}.$

Pseudomonomials

Definition

For some $f \in \mathbb{F}_2[x_1, ..., x_n]$, f is a **pseudo-monomial** if f has the form

$$f = \prod_{i \in \sigma} x_i \prod_{j \in \tau} (1 + x_j) = x_\sigma \prod_{i \in \tau} (1 + x_i).$$

for some $\sigma, \tau \subset [n]$ with $\sigma \cap \tau = \emptyset$.

Example

Pseudo-monomial:

$$x_1x_2(1+x_3)(1+x_4)$$

Not pseudo-monomials:

$$x_1x_2 + x_1x_3$$
 and $x_1^2x_2$

The neural ideal

Definition

For any $v \in \{0,1\}^n$, consider ρ_v , defined as

$$ho_{v} = \prod_{i=1}^{''} (1 - v_{i} - x_{i}) = \prod_{\{i | v_{i} = 1\}} x_{i} \prod_{\{j | v_{j} = 0\}} (1 + x_{j})$$

Definition

For a code *C*, the **neural ideal** $J_C = \langle \{\rho_v | v \notin C\} \rangle$. Note: $V(J_C) = C$.

Definition

The **canonical form** of a neural ideal J_C is the set of all minimal pseudo-monomials that are elements of J_C .

The canonical form gives us a compact description of the relationships between receptive fields associated with a code.

The ultimate goal:

To find an efficient method to compute the canonical form of a neural code.

- Computing the canonical form is very computationally inefficient
- The computation is infeasible for codes on large numbers of neurons.
- (Petersen et al) Computing the Gröbner basis, another generating set of the ideal, is much faster.

Gröbner bases

Definition

A set $\{g_1, \ldots, g_t\} \subseteq I$ is a **Gröbner basis** of I if and only if the leading term of any element of I is divisible by one of the LT (g_i) .

Definition (Criteria for a reduced Gröbner basis)

Let G be a Gröbner basis. G is a **reduced Gröbner basis** for all $g \in G$, no trailing term of any $g \in G$ is divisible by the leading term of any element of G. Note: For a given monomial order the reduced Gröbner basisis

unique.

Definition

Let *I* be an ideal. The **universal Gröbner basis** is the union of all the reduced Gröbner bases of *I* w.r.t. any monomial order.

Theorem (L.)

Let f be an pseudo-monomial, and let $G = \{g_1, \ldots, g_k\}$ be a set of pseudo-monomials. If the remainder on division of f by $G = \{g_1, \ldots, g_s\}$ is 0 for any monomial ordering, then for some $g \in G$, g divides f.

Pseudo-monomials

Proposition

Let $f = x_{\sigma} \prod_{i \in \tau} (1 + x_i)$ be a pseudo-monomial. Then we can write f as $f = \sum x_{\sigma} x_{\gamma},$

 $\gamma \in P(\tau)$

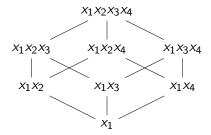
where $P(\tau)$ is the powerset of τ .

Notice that each term of f corresponds to an element of $P(\tau)$.

Hypercube of f

Example

Let $f = x_1(1+x_2)(1+x_3)(1+x_4)$. In this case, $\sigma = \{1\}$ and $\tau = \{2, 3, 4\}$.



hypercube of f

Pseudo-monomial divisibility

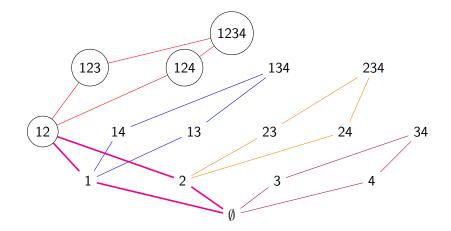
Lemma

Let $J \in \mathbb{F}_2[x_1, \ldots, x_n]$ be an ideal, and let f, g be pseudo-monomials such that $g = x_\alpha \prod_{i \in \beta} (1 + x_i)$ and $f = x_\sigma \prod_{i \in \tau} (1 + x_i)$. Then g | f if and only if $\alpha \subset \sigma$ and $\beta \subset \tau$.

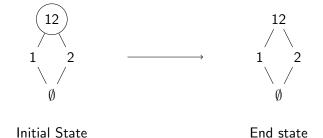
Lemma

Let $f = x_{\sigma} \prod_{i \in \tau} (1 + x_i)$ and let H be the hypercube of $P(\sigma \cup \tau)$. A pseudo-monomial h divides f if and only if the hypercube of h is a sub-cube of H and the hypercube of h intersects the Hasse diagram of $P(\sigma)$ at a unique vertex.

Geometric Intuition



Proof Idea



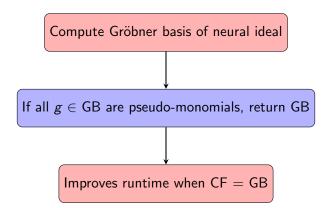
Theorem (L.)

Let C be a code, and J_C be the neural ideal of C. If the canonical form of J_C is a Gröbner basis, then the canonical form of J_C is a reduced Gröbner basis.

Theorem (L.)

Let J_C be a neural ideal and let G be the universal Gröbner basis of J_C . For all $g \in G$, if g is a pseudo-monomial, then g is in the canonical form of J_C .

Application



Complementary Codes

Definition

Let $c \in \{0,1\}^n$ be a code. The **complement** of c is the code $c' \in \{0,1\}^n$ such that $c'_i = 1$ if and only if $c_i = 0$.

Definition

Let f be a pseudo-monomial such that $f = x_{\sigma} \prod_{i \in \tau} (1 + x_i)$. The **complement** of f, denoted f', is $f' = x_{\tau} \prod_{j \in \sigma} (1 + x_j)$.

Definition

A code $C \subset \{0,1\}^n$ is called **complement-complete** if for all $c \in C$, $c' \in C$ as well.

Complement-Complete implies $CF \neq GB$

Theorem (L.)

Let C be a code on n neurons such that $C \subsetneq \{0,1\}^n$. If C is complement-complete, then the canonical form of J_C is not a Gröbner basis.

Example

Let
$$C = \{111, 000, 110, 001, 100, 011\}.$$

 $C' = \{010, 101\}$
 $J_C = \langle x_2(1+x_1)(1+x_3), x_1x_3(1+x_2) \rangle$

What we know now: If an element of the Gröbner basis is a pseudo-monomial, then it is in the canonical form.

What we want to know: If an element of the Gröbner basis is *not* a pseudo-monomial, can we still use it to find elements of the canonical form?

I would like to thank my mentor, Anne Shiu, for her help and guidance. I would also like to thank Kaitlyn Phillipson and Ola Sobieska.

This research was conducted as part of the NSF-funded REU in Mathematics at Texas A&M University (DMS-1460766), Summer 2016.

Thank you!