On the Zeroes of Half Integral Weight Eisenstein Series of $\Gamma_{0}(4)$

Samantha Moore

July 18, 2016

Background

Definition

$\boldsymbol{\Gamma}_{0}(4)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1, c \equiv 0 \bmod 4\right\}$

Definition

The Eisenstein series of weight $\frac{k}{2}$ for each of the cusps of $\Gamma_{0}(4)$ are modular forms defined as:

- $\mathbf{E}_{\infty}(\mathbf{z})=e^{\frac{\pi i k}{4}} \sum_{(2 c, d)=1, c>0} \frac{G\left(\frac{-d}{4 c}\right)^{k}}{(4 c z+d)^{k / 2}}$.
- $\mathbf{E}_{\mathbf{0}}(\mathbf{z})=\sum_{(u, 2 v)=1, u>0} \frac{\left(\frac{-v}{u}\right) \epsilon_{u}^{k}}{(u z+v)^{k / 2}}$.
- $\mathbf{E}_{\frac{1}{2}}(\mathbf{z})=e^{\frac{-\pi i k}{4}} \sum_{(2 c, d)=1, d>0} \frac{G\left(\frac{d-2 c}{8 d}\right)^{k}}{(d z+c)^{k / 2}}$.

Project Goal

Project Goal

I wish to determine the location of the zeroes of the Eisenstein series E_{∞} of $\Gamma_{0}(4)$.

Fundamental Domains

F_{∞}

Zeroes of $\Gamma_{0}(4)$

Theorem

For k sufficiently large, all but at most $O(\sqrt{k \log k})+4$ zeroes of $E_{\infty}(z, k)$ lie on the lines $x=-\frac{1}{2}$ of F_{0} and $x=\frac{1}{2}$ of $F_{\frac{1}{2}}$.

Proof Overview

- Show that $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$ is a real valued function
- Find a real valued trigonometric approximation of $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$, which we denote as $e^{\frac{\pi i k}{4}} M_{0}$
- Bound the error of this approximation for large k and $y \leq \frac{c \sqrt{k}}{\sqrt{\log k}}$, where $c \leq 1$ is a constant
- Use the Intermediate Value Theorem to determine zeroes of M_{0}
- By our bounds on the error of M_{0} in relation to $E_{0}\left(-\frac{1}{2}+i y, k\right)$, we prove that each of the zeroes of M_{0} correspond to a zero of $E_{0}\left(-\frac{1}{2}+i y, k\right)$ and thus a zero of $E_{\infty}(z, k)$.

Show that $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$ is a real valued function

- We will use the Fourier expansion of $E_{0}(z, k)$, which is defined as

$$
E_{0}(z, k)=2^{\frac{k}{2}} \sum_{\ell=1}^{\infty} b_{\ell} q^{\ell}
$$

where $q=e^{2 \pi i z}$ and

$$
b_{\ell}=\frac{\pi^{\frac{k}{2}} \ell^{\frac{k}{2}-1}}{\Gamma\left(\frac{k}{2}\right) e^{\frac{\pi i k}{4}}} \sum_{n_{0}>0 \text { odd }} \epsilon_{n}^{k} n^{-\frac{k}{2}} \sum_{j=0}^{n-1}\left(\frac{j}{n}\right) e^{-\frac{2 \pi i \ell j}{n}} .
$$

Show that $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$ is a real valued function

- Case 1: When ℓ is squarefree, Koblitz simplifies b_{ℓ} to

$$
b_{\ell}=\frac{\pi^{\frac{k}{2}} \ell^{\frac{k}{2}-1}}{\Gamma\left(\frac{k}{2}\right) e^{\frac{\pi i k}{4}}} \sum_{n_{0}>0 \text { odd } n_{1} \mid \ell, n_{1} \text { odd }} \epsilon_{n_{0} n_{1}^{2}}^{k+1}\left(n_{0} n_{1}^{2}\right)^{-\frac{k}{2}}\left(\frac{-\ell}{n_{0}}\right) \sqrt{n_{0}} \mu\left(n_{1}\right) n_{1}
$$

where

$$
\mu\left(n_{1}\right)=\left\{\begin{array}{cl}
0, & n_{1} \text { not squarefree } \\
(-1)^{r}, & n_{1} \text { is the product of } r \text { distinct primes }
\end{array}\right.
$$

- Note that $\epsilon_{n_{0} n_{1}^{2}}^{k+1}= \pm 1$ as k is odd.
- Thus, every part of b_{ℓ} is real except for the factor $e^{-\frac{\pi i k}{4}}$.

Show that $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$ is a real valued function

- Case 2: (ℓ not squarefree. Let $\ell=p^{2 v} \ell_{0}$ and $p^{2} \nmid \ell_{0}$. By Koblitz,
$\frac{b_{\ell}}{b_{\ell_{0}}}=\left\{\begin{array}{cl}2^{(k-2) v}, & \mathrm{p}=2 \\ \sum_{h=0}^{v} p^{h(k-2)}, & \text { p odd prime } p \mid \ell_{0} \\ \sum_{h=0}^{v} p^{h(k-2)}-\chi_{(-1)^{\lambda} \ell_{0}}(p) p^{\lambda-1} \sum_{h=0}^{v} p^{h(k-2)}, & \text { p odd prime } p \nmid \ell_{0} .\end{array}\right.$
where $\lambda=\frac{k-1}{2}$ and $\chi_{(-1)^{\lambda} \ell_{0}}=\left(\frac{-1}{p}\right)^{\lambda}\left(\frac{\ell_{0}}{p}\right)$.
- Thus, $b_{\ell}=A b_{\ell_{0}}$ where $A \in \mathbb{R}$

Show that $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$ is a real valued function

- Remember that $\ell=p^{2 v} \ell_{0}$. We could continue pulling factors out of ℓ until we arrive at a squarefree value, ℓ_{*}. This would give us a chain of equivalencies, $b_{\ell}=A b_{\ell_{0}}=A B b_{\ell_{1}}=\ldots=A B \ldots N b_{\ell_{*}}$ where each scalar is a real constant.
- Thus, $\ell=C b_{\ell_{*}}$ where $C \in \mathbb{R}$. Furthermore, $e^{\frac{\pi i k}{4}} b_{\ell}=C e^{\frac{\pi i k}{4}} b_{\ell_{*}}$ By the first case, the right side is now real valued, and thus the left side must also be real

Show that $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$ is a real valued function

- Returning to the Fourier expansion, we now have

$$
e^{\frac{\pi i k}{4}} E_{0}(z, k)=2^{\frac{k}{2}} \sum_{\ell=1}^{\infty} e^{\frac{\pi i k}{4}} b_{\ell} q^{\ell}
$$

where $q=e^{2 \pi i z}$.

Approximating $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$

- $E_{0}(z)=\sum_{(u, 2 v)=1, u>0} \frac{\left(\frac{-v}{u}\right) \epsilon_{u}^{k}}{(u z+v)^{k / 2}}$.
- We aim to find a finite approximation for this infinite sum that is accurate for k large enough. Thus, consider the following terms

$$
\begin{aligned}
& u=1, v=0: \frac{1}{z^{\frac{k}{2}}}=\frac{1}{\left(-\frac{1}{2}+i y\right)^{\frac{k}{2}}}=\frac{1}{\left(r e^{i(\pi-\delta)}\right)^{\frac{k}{2}}} \\
& u=1, v=1: \frac{1}{(z+1)^{\frac{k}{2}}}=\frac{1}{\left(\frac{1}{2}+i y\right)^{\frac{k}{2}}}=\frac{1}{\left(r e^{i \delta}\right)^{\frac{k}{2}}}
\end{aligned}
$$

Note that $\delta=\arctan (2 y)$. Let

$$
M_{0}=\frac{1}{\left(r e^{i \delta}\right)^{\frac{k}{2}}}+\frac{i^{k}}{\left(r e^{i(\pi-\delta)}\right)^{\frac{k}{2}}} .
$$

Approximating $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$

- We convert to a trigonometric function by the identity $e^{i x}=\cos (x)+i \sin (x)$. From here, by using trigonometric identities and simplifying, we find that

$$
M_{0}=r^{-\frac{k}{2}} e^{-\frac{\pi i k}{4}} \sqrt{2} \begin{cases}\cos \left(\frac{\delta k}{2}-\frac{\pi}{4}\right), & k \equiv 1 \bmod 4 \\ \cos \left(\frac{\delta k}{2}+\frac{\pi}{4}\right), & k \equiv 3 \bmod 4\end{cases}
$$

- Note that $e^{\frac{\pi i k}{4}} M_{0}$ is real valued.

Approximating $e^{\frac{\pi i k}{4}} E_{0}\left(-\frac{1}{2}+i y, k\right)$

- The following two sums include all of the terms left to be bounded:

$$
J_{1}=\sum_{v \neq 0,1} \frac{\left(\frac{-v}{1}\right) \epsilon_{1}^{k}}{(z+v)^{\frac{k}{2}}} \quad J_{2}=\sum_{(u, 2 v)=1, u>1} \frac{\left(\frac{-v}{u}\right) \epsilon_{u}^{k}}{(u z+v)^{\frac{k}{2}}} .
$$

- Using tools such as the triangle inequality, bounding sums by integrals, etc. we find that $\left|J_{1}\right|=o(1),\left|J_{2}\right| \ll\left(\frac{8}{81}\right)^{\frac{k}{4}}$ when k large and $y \leq \frac{c \sqrt{k}}{\sqrt{\log k}}$
- Note that $e^{\frac{\pi i k}{4}}\left(J_{1}+J_{2}\right)$ is real valued.

Use the Intermediate Value Theorem to determine zeroes

 of M_{0}- Recall that

$$
e^{\frac{\pi i k}{4}} M_{0}=r^{-\frac{k}{2}}\left\{\begin{array}{lll}
\sqrt{2} \cos \left(\frac{\delta k}{2}-\frac{\pi}{4}\right), & k \equiv 1 & \bmod 4 \\
\sqrt{2} \cos \left(\frac{\delta k}{2}+\frac{\pi}{4}\right), & k \equiv 3 & \bmod 4
\end{array}\right.
$$

is a real valued function (where $\delta=\arctan 2 y$).

- Note that, as M_{0} is a valid approximation for $\frac{1}{2} \leq y \leq \frac{c \sqrt{k}}{\sqrt{\log k}}$, we can bound δ to the interval $\frac{\pi}{4} \leq \delta \leq \arctan \frac{2 c \sqrt{k}}{\sqrt{\log k}}$. From here on, we use the notation $y_{\max }=\frac{c \sqrt{k}}{\sqrt{\log k}}$.

Use the Intermediate Value Theorem to determine zeroes of M_{0}

- We wish to find sample points of this function that have the greatest absolute value. Thus, for $k \equiv 1 \bmod 4$, we want $\frac{\delta k}{2}-\frac{\pi}{4}=n \pi$ for some $n \in \mathbb{N}$. Solving for δ, we find $\delta=\frac{2 \pi n}{k}+\frac{\pi}{2 k}$.
- Substituting this into our interval for δ above, we get $\frac{\pi}{4} \leq \frac{2 \pi n}{k}+\frac{\pi}{2 k} \leq \arctan \left(2 y_{\max }\right)$.

Use the Intermediate Value Theorem to determine zeroes

 of M_{0}- Next we solve for n, getting

$$
\frac{k}{8}-\frac{1}{4} \leq n \leq \frac{k}{2 \pi} \arctan \left(2 y_{\max }\right)-\frac{1}{4} .
$$

- Using some properties of $\arctan (x)$, we can simplify this to

$$
\frac{k}{8}-\frac{1}{4} \leq n \leq \frac{k-1}{4}-O\left(\frac{k}{y_{\max }}\right) .
$$

Use the Intermediate Value Theorem to determine zeroes of M_{0}

- As the sign of $\cos \left(\frac{\delta k}{2}-\frac{\pi}{4}\right)$ changes every time n increases, this describes approximately $\frac{k}{8}-O\left(\frac{k}{y_{\max }}\right)-1$ sign changes.
- By the Intermediate Value Theorem, there must be a zero of $e^{\frac{\pi i k}{4}} M_{0}$ between each of these sign changes, so we have found approximately $\frac{k}{8}-O\left(\frac{k}{y_{\max }}\right)-2$ zeroes.

Proving the Main Theorem

- Recall that $e^{\frac{\pi i k}{4}} E_{0}(z, k)=e^{\frac{\pi i k}{4}} M_{0}+e^{\frac{\pi i k}{4}}\left(o(1)+c_{1}\left(\frac{8}{81}\right)^{\frac{k}{4}}\right)$ for $x=-\frac{1}{2}$ and k large. From this, each sign change of $e^{\frac{\pi i k}{4}} M_{0}$ found above also corresponds to a sign change of $e^{\frac{\pi i k}{4}} E_{0}(z, k)$.
- Therefore, by the IVT, we have found approximately $\frac{k}{8}-O\left(\frac{k}{y_{\max }}\right)-2$ zeroes of $e^{\frac{\pi i k}{4}} E_{0}(z, k)$ when k is large.

Proving the Main Theorem

- Repeating this entire process for $E_{\frac{1}{2}}(z, k)$, we find a total of approximately $\frac{k}{4}-O\left(\frac{k}{y_{\max }}\right)-4$ zeroes of $E_{\infty}(z, k)$.
- By the valence formula for $E_{\infty}(z, k)$, there are at most $\left\lfloor\frac{k}{4}\right\rfloor$ zeroes. Therefore we are missing approximately

$$
O\left(\frac{k}{y_{\max }}\right)+4=O(\sqrt{k \log k})+4 \text { zeroes. }
$$

Thank you for listening.

