Counting the p-adic valuations of the roots of multivariate systems of polynomials

Cory Saunders
Haverford College
July 18, 2016

Paths of Glory before ours

■ 1637: Descarte's Rule. Suppose $f \in \mathbb{R}\left[x_{1}\right]$ and has t terms. Then there are at most $2 t+1$ real roots.

- 1980s: van den Dries and (?). Suppose $f_{i}, \cdots f_{n} \in \mathbb{Q}\left[x_{1}, \cdots, x_{n}\right]$ with $\leq t$ terms each. Then there exists a finite number of isolated roots in \mathbb{Q}_{p}^{n}. No explicit formula found yet!

■ 2000s: p-adic tropical geometry can help with finding explicit bounds on the number of roots in \mathbb{Q}_{p}. Complexity theorey gets involved!

Our goal this summer

Use p-adic techniques to help bound the number of integers roots of certain polynomial systems.

p-adic fields

Let p be prime.
$\square \mathbb{Z}$: Field of integers. An integer in base 3 is a finite sequence. Ex: 1012 (base 3) $=1 \cdot 3^{3}+0 \cdot 3^{2}+1 \cdot 3^{1}+2 \cdot 3^{0}$ (base 10)
■ \mathbb{Z}_{3} : All sequences terminating on the right. $\cdots 1012=\cdots+1 \cdot 3^{3}+0 \cdot 3^{2}+1 \cdot 3^{1}+2 \cdot 3^{0}$

- \mathbb{Q}_{3} : All sequences with a finite number of digits after the decimal point.
$\cdots 1012.22=\cdots+1 \cdot 3^{3}+0 \cdot 3^{2}+1 \cdot 3^{1}+2 \cdot 3^{0}+2 \cdot 3^{-1}+2 \cdot 3^{-2}$
- \mathbb{C}_{3} : The completion of the algebraic closure of \mathbb{Q}_{3}.

Motivating example: 3 -adic roots of $162-x+63 x^{3}$

Let $p=3$. Consider the polynomial $162-x+63 x^{3}$.
One real root $(\approx-1.373 \ldots)$, but three 3 -adic roots. Found in Maple:

$$
3^{-1}+2+2 \cdot 3+2 \cdot 3^{4}+2 \cdot 3^{5}+\text { higher order terms }
$$

$$
2 \cdot 3^{-1}+2 \cdot 3^{2}+2 \cdot 3^{3}+3^{4}+\text { higher order terms }
$$

$$
2 \cdot 3^{4}+2 \cdot 3^{14}+3^{15}+\text { higher order terms }
$$

The power of 3 of the first non-zero term is its p-adic valuation.

Upshot

The polynomial $162-x+63 x^{3}$ has three 3 -adic roots. Two roots have valuation -1 and one root has valuation 4 .

Drawing pictures

You could also draw a picture to get to the same upshot.

$$
f(x)=162-x+63 x^{3}=2 \cdot 3^{4}-x+7 \cdot 3^{2}
$$

For $f \in \mathbb{C}_{p}\left[x_{1}, \cdots, x_{n}\right]$ written $f=\sum_{i} c_{i} x^{a_{i}}$:

Definition (Newton polytope of f)

The Newton polytope, $\operatorname{Newt}(f)$, is the convex hull of the set $\left\{a_{i}\right\}$.

Definition (p-adic Newton polytope of f)

The p-adic Newton polytope, $\operatorname{Newt}_{p}(f)$, is the convex hull of the set $\left\{a_{i}, \operatorname{ord}_{p}\left(c_{i}\right)\right\}$.

Definition (p-adic Tropical Variety of f)

The p-adic Tropical Variety, $\operatorname{Trop}_{p}(f)$, is the set $\left\{v \in \mathbb{R}^{n} \mid(v, 1)\right.$ is an inner normal of a positive-dim. face of $\left.\operatorname{Newt}_{p}(f)\right\}$

Generalizing to higher dimensions

Let $p=3$. Consider the polynomial $g=1+x^{2}-54 x y$.
What does $\operatorname{Trop}_{p}(g)$ look like? (Demonstration)

Upshot

We can derive the Y-shape of $\operatorname{Trop}_{p}(g)$ by $\operatorname{Newt}(g)$ (independent of coefficients).
If you want the position of $\operatorname{Trop}_{p}(g)$, you need $\operatorname{Newt}_{p}(g)$ (dependent of coefficients).

Cory-jargon: The Y-shape in $\operatorname{Trop}_{p}\left(f_{i}\right)$ will occur if $\operatorname{Newt}\left(f_{i}\right)$ is a triangle. They are "hyper-Y's."

Link to bounding integer roots: Kapranov's Theorem

Theorem (Kapranov)
For a system $F:=\left(f_{1}, \cdots, f_{n}\right) \in C_{p}\left[x_{1}, \cdots, x_{n}\right]$, $\operatorname{ord}_{p}\left(\mathcal{Z}_{\mathbb{C}_{p}}\left(f_{1}, \cdots, f_{n}\right)\right) \subseteq \bigcap_{i=1} \operatorname{Trop}_{p}\left(f_{i}\right) \bigcap \mathbb{Q}^{n}$.

Let $t:=$ the number of exponent vectors, $\left\{a_{i}\right\}$ in the system.
Special case (the "circuit case"): When $t=n+2$ (with some mild conditions). Use Gaussian Elimination and reduce problem to looking at a collection of hyper-Y's.

Goal

Find a sufficiently good upper bound on the number of intersections of the $\operatorname{Trop}_{p}\left(f_{i}\right)$ in the case where $t=n+2$.

Higher dimensional hyper-Y's and why we choose p-adics

$$
F:=\left(f_{1}, f_{2}, f_{3}\right):=\left(x y-x^{2}-1 / 16^{6}, y z-1-x^{2}, z-1-x^{2} / 16^{18}\right)
$$

$$
\text { We have } t=n+2 . \quad x y, x^{2}, 1, y z, z
$$

Look at intersections of
$\operatorname{Arch} \operatorname{Trop}\left(f_{1}\right) \cap \operatorname{Arch} \operatorname{Trop}\left(f_{2}\right) \cap \operatorname{Arch} \operatorname{Trop}\left(f_{3}\right)$. (Image: Dr. Rojas.)

$\operatorname{Arch} \operatorname{Trop}\left(f_{i}\right)$ is the real analog to $\operatorname{Trop}_{p}\left(f_{i}\right)$.

Old Bounds and New

Theorem (Koiran, Portier, Rojas)

Suppose $F:=\left(f_{1}, \cdots, f_{n}\right)$ with $f_{i} \in \mathbb{C}_{p}\left(x_{1}, \cdots x_{n}\right)$. In the "circuit case" (\# exponent vectors $=n+2$), then the maximum number of valuations of the roots of F is at most $\max \left\{2,\left\lfloor\frac{n}{2}\right\rfloor^{n}+n\right\}$.

Short-term goal

Achieve an upper bound polynomial in n. For certain case nice cases, we can prove a bound of $n+1$. For certain less-nice cases, a bound of $2 n+1$ (S).

Conjecture (Koiran, Portier, Rojas)

The bound can be improved to $n+1$. This bound is sharp.

Conclusions

Same goal, new friend

Find sufficiently good bounds on the number of integer roots for a system of multivariate polynomials.

Bounding p-adic valuations is a step towards bounding integer roots. We do this by looking at intersections of the $\operatorname{Trop}_{p}\left(f_{i}\right)$'s.
In the "circuit case," we want to bound the number of intersections (=upper bound on number of valuations of the roots of F) by $n+1$.

Thank you

Thank you for listening!

References

[1] Gouvêa, Fernando Q., p-adic Numbers: An Introduction. Second edition. Universitext. Springer-Verlag, Berlin, 1997.
[2] Koiran, Pascal; Portier, Natacha; Rojas, J. Maurice, Counting Tropically Degenerate Valuations and p-adic Approaches to the Hardness of the Permanent, Math ArXiv 1309.0486v1
[3] Rojas, J. Maurice, Efficiently Estimating Norms of Complex Roots of Multivariate Polynomials.

