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Abstract

Given a family of polynomials supported on A, the A-discriminant variety ∇A describes the subset
of polynomials having a degenerate root. The complement of Re(∇A) is a disjoint union of connected
components, also referred to as A-discriminant chambers. For a given chamber, the topology of the real
zero set of functions with coefficients in that chamber is diffeotopic. Thus, for a given support, an upper
bound on the number of discriminant chambers implies an upper bound on the number of diffeotopy types
of the real zero set of polynomials with that support. Exploiting homogeneities of the A-discriminant
variety and using stratified Morse theory, we prove a O(n24) upper bound for the number of discriminant
chambers of A with A = n + 4, which in turn implies a bound for the number of diffeotopy types of the
real zero set of an n-variate (n + 4)-nomial.

1 Introduction

While classical algebraic geometry has made immense progress in studying the solution sets of polynomials
over algebraically closed fields such as C, the topology of the real zero set of a polynomial may differ
dramatically from that of its complex zero set, in particular when its degree far exceeds the number of
monomial terms. Characterizing the dependence of the topology of the real zero set of a multivariate
polynomial on its monomial structure is an open problem within real algebraic geometry, and we present a
polynomial upper bound on the number of diffeotopy types of real zero sets of n-variate (n+ 4)-nomials. In
particular, our bounds are independent of the degree of the polynomial.

2 New Topological Upper Bound

The quintessential problem of classifying the topological types of an algebraic set arises in Hilbert’s 16th
problem, which seeks the determination of all possible nestings of compact components of a real projective
plane curve. More generally, one would like to determine the possible diffeotopy types of these curves.

Definition 1. Let X,Y ⊆ Rn. H : [0, 1]×Rn → Rn is an diffeotopy if H(t, ·) is a diffeomorphism for all
t ∈ [0, 1], H(0, ·)|X = 1X , and H(1, X) = Y . If such a function exists, we say X and Y are diffeotopic.

Observe that diffeotopy is a stronger condition than diffeomorphism, requiring an continuous family of
diffeomorphisms that “deform” X to Y .

Definition 2. Given a system of polynomials F = (f1, · · · , fk) in n variables, let Z∗
R

(F ) (resp. Z+(F ))
denote the set of roots of F in (R∗)n (resp. Rn+).

In order to avoid a technicality, we make a genericity assumption on A.

Theorem 1. Fix A ⊂ Zn with #A = n+ 4, and suppose that the intersection of A with each facet (i.e. face
of dimension n − 1) of its convex hull consists of exactly n points. Then the number of topological types of
the real zero set of f with Supp(f) = A is O(n24).
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For #A = n + 1 (resp. #A = n + 2), it has been shown that there are at most 2 (resp. 3) diffeotopy
types of Z+(f) with Supp(f) = A [BRS]. That there exist topological bounds – depending only on n and
#A – is already significant, and was first shown in the 1990s by Lou van den Dries [vdD84]. For the case
#A = n + 3, a topological bound which is polynomial in n was found in [DRRS07] and refined in [Rus13].
While upper bounds for the cases #A = n + k with k ≥ 4 may be derived from the results in [GVZ04]
or [BV07], the bounds obtained thereof are exponential in n. Thus, our polynomial bound, obtained in a
similar fashion to Theorem 1.3 in [DRRS07], is a significant improvement. Our next steps will be to improve
our bound further and to attempt to generalize this method to all 5 ≤ k ≤ n.

3 Background

3.1 A-discriminants

Definition 3. Given an exponent set A = {a1, · · · , an+k} ⊂ Zn , k ≥ 1, identify with A the family of
n-variate (n+ k)-nomials

FA =

{
fc =

n+k∑
i=1

cix
ai | c = (c1, · · · , cn+k) ∈ CPn+k−1

}

where the notation xai := x
a1,i
1 · · ·xan,i

n is understood. If the set A does not lie in some affine (n − 1)-
hyperplane, then fc is an honestly n-variate.

Definition 4. A polynomial f ∈ C[x1, · · · , xn] has a degenerate root at ζ if

f(ζ) =
∂f

∂x1
(ζ) = · · · = ∂f

∂xn
(ζ) = 0.

Definition 5. Given an exponent set A = {a1, · · · , an+k} ⊂ Zn, the A-discriminant variety is given by

∇A = {[c1 : · · · : cn+k] ∈ CPn+k−1 | fc has a degenerate root ζ ∈ (C∗)n}

In the following, we will see that the A-discriminant variety can also be expressed as the zero set of a
polynomial in the ci.

Suppose f(x), g(x) ∈ C[x], with f(x) =
∑m
i=0 aix

i and g(x) =
∑n
i=0 bix

i. Their Sylvester matrix is given
by

Syl(f, g) =



a0 a1 · · · am 0

0
. . .

. . . 0
0 a0 a1 · · · am

b0 b1 · · · bn 0

0
. . .

. . . 0
0 b0 b1 · · · bn


Let the resultant of f, g be given by Res(f, g) = det Syl(f, g). Observe that the resultant is a polynomial in
the coefficients of f and g.

Theorem 2. [GKZ94] Suppose f(x), g(x) ∈ C[x]. Then Res(f, g) = 0 if and only if f(x) = g(x) = 0 for
some x ∈ C.

From the previous theorem it follows that a univariate polynomial f has a degenerate root if and only
if Res(f, f ′) = 0, and we call the A-discriminant polynomial ∆A = ±Res(f, f ′). Furthermore, the Cayley
trick can be used to generalize the notion of resultants to multivariate polynomials. However, the A-
discriminant polynomial is not computationally friendly due to both the number of terms and the size of its
coefficients. While ∇A is a n + k − 2-dimensional hypersurface, due to homogeneity we may work with a
k − 1-dimensional slice which we call the reduced A-discriminant variety ∇A. The reduced A-discriminant
variety has the advantage that it admits a parametrization of much simpler form than the A-discriminant
polynomial known as the Horn-Kapranov Uniformization.
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Theorem 3. When the reduced A-discriminant ∇A is a hypersurface, it can be parametrized by the Horn-
Kapranov Uniformization:

∇A = {(Bλ)Bt | λ ∈ CP k−2} ⊂ (C∗)k−1

where Â =

[
1 · · · 1
a1 · · · an+k

]
and the columns of B ∈ Z(n+k)×(k−1) form a basis for the right nullspace of Â.

By performing column operations on B, we may assume that scalar multiples of the unit vectors
~e1, · · · , ~ek−1 are among the rows of B. Since (Bλ)B

t

= 0 for λ with λk−1 = 0 and {λ = [λ1 : · · · :
λk] ∈ CP k−1 | λk 6= 0} is homeomorphic to Ck−1, the reduced A-discriminant can be expressed as the
image of {λ = (λ1, · · · : λk−2) ∈ Rk−2 | `1(λ) · · · `n+4(λ) 6= 0} under the mapping:

Ψ(λ) =

(
n+k∏
i=1

`
bm,i

i (λ)

)k−1
m=1

where b1, · · · , bk−1 are the columns of the matrix B and `i(λ) =
∑k−2
j=1 bj,iλj + bk−1,i.

Definition 6. Re(∇A)c consists of a finite number of connected components called reduced discriminant
chambers.

Theorem 4. [DRRS07] If f1 and f2 represent polynomials in the same reduced A-discriminant chamber,
then Z∗

R
(f1) and Z∗

R
(f2) are diffeotopic.

This is significant because a bound on the number of discriminant chambers implies a bound on the
number of topological types of the real zero set of polynomials in the family FA.

3.2 Critical Points Method

Definition 7. Suppose X is a Whitney stratified space. Let the critical point of a smooth function
f : X → R be a critical point of the restriction of f to a stratum of X. f is a Morse function on X if its
critical values are distinct and each critical point of f is nondegenerate, i.e. the Hessian of f at each critical
point is nonsingular.

Theorem 5. Suppose X is a Whitney stratified space and f is a Morse function with adjacent critical values
c0 < c1. As c varies within (c0, c1), the topological type of f−1(c) is constant. [Hir97]

Critical Points Method. Suppose X ⊂ Rn admits a Whitney stratification such that each stratum of X
has codimension ≥ 1, and suppose that the coordinate projection πn when restricted to X has finitely many
critical values. Let Mn be the number of critical points of the restriction of πn to X, and inductively define

Mk = max
cj 6=cji

j=k+1,··· ,n

(
# critical values of πk|X∩{xk=c,xk+1=ck+1,··· ,xn=cn}

)
ck1 , · · · , ckMk

= critical values of πk

for k = n − 1, · · · , 1. Assume that πk|X∩{xk=c,xk+1=ck+1,··· ,xn=cn} has finitely many critical values for each
k, so Mk is finite. Then the number of connected components of Rn \X is bounded above by

n∏
i=1

(Mi + 1).

Proof sketch To count the number of connected components of (R)n \ X, let us introduce hyperplanes
H1, · · · , HMn

at the xn coordinates corresponding to the critical values of πn|X . Since each connected
component of T = Rn \(X∪H1∪· · ·∪HMn

) is contained in a connected component of Rn \X, it is sufficient
to count the connected components of T . Since the hyperplanes H1, · · · , HMn divide Rn into 1 +Mn ‘slabs’
(of the form (a, b)×Rn−1), it is sufficient to bound the number of components of (slab) \X. By Theorem 5,
this is equivalent to bounding the number of connected components of {x ∈ Rn | xn = c 6= cn1 , · · · , cnMn

}∩X.
The result follows from induction on dimension.
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3.3 Sheared Binomial Systems

Definition 8. Let l1, · · · , lj ∈ R[λ1, · · · , λk] be polynomials of degree≤ 1. For all (b1,1, · · · , b1,j), · · · , (bk,1, · · · , bk,j) ∈ Rj
linearly independent (j ≥ k), call the equations given by

S =


∏j
i=1 l

b1,i
i (λ)
...∏j

i=1 l
bk,i

i (λ)

 =

1
...
1


a k× k sheared binomial system with j factors (referred to as a Gale Dual System in [BS07]). Also
call each li a factor of the system.

Definition 9. With the notation from above, suppose that a1, · · · , ak ∈ Zk are vectors such that B =
{(a1, b1), · · · , (ak, bk)} ⊂ Zk ⊕ Zj is a linearly independent collection, and let h1, · · · , hj ∈ R[λ1, · · · , λk] be
a collection of polynomials of degree ≤ d. Call the equations given by

λaih(λ)bi = 1 for i = 1, · · · , k

a (d, k)-dense Gale system and call each hi a factor of the system.

Theorem 6. 1. The number of non-degenerate roots λ ∈ Rk of any k × k sheared binomial system with
n+ k factors is bounded above by:

(a) n+ 1 for k = 1

(b) e4+3
4 2(k

2)nk for k > 1 [BS07].

2. [RSS11] The number of non-degenerate positive roots of a (d, `)-dense Gale system with n factors is
bounded above by

e2 + 3

4
2(`

2)n`d`

4 Proof of Theorem 1

In the following, the critical points method and a bound on the number of real roots of polynomials with
a certain structure are used to bound number of chambers in complement of the reduced A-discriminant of
an n-variate (n+ 4)-nomial. Because components of ∇A not contained in the image of the Horn-Kapranov
parametrization have codimension > 1, it is sufficient to consider the image of the map:

Ψ(λ) =

(
n+4∏
i=1

l
b1,i
i (λ),

n+4∏
i=1

l
b2,i
i (λ),

n+4∏
i=1

l
b3,i
i (λ)

)

where b1, b2, b3 are the columns of the matrix B, li(λ) = b1,iλ1 + b2,iλ2 + b3,i, and Ψ is defined on
{λ ∈ R2 | l1(λ) · · · ln+4(λ) 6= 0}. Let Ω denote the closure of the image of Ψ.

Sign combinations: Since each `i has constant sign on one ‘side’ of its zero set (which is a line in the
plane), counting the number of possible sign combinations of the vector (`1(λ), · · · , `n+4(λ)) is equivalent to
counting the number of components of R2 in the complement of n+ 4 lines, which is given by [Sch01]

1 + (n+ 4) +

(
n+ 4

2

)
=

1

2
(n2 + 9n+ 22)

Notation: Denote ∂ψi

∂λj
by ψij and let πi be the projection of Rk onto the ith coordinate (i ≤ k). Let

M3(A) be the number of critical points of π3 restricted to Ω.

• Critical points occuring in one ‘sheet’ of Ω occur when

[0] = D(π3 ◦Ψ)(λ) = Dπ3(Ψ(λ))DΨ(λ) =
[
0 0 1

]
DΨ(λ) =⇒ ψ31 = ψ32 = 0
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By the product rule and after dividing out by ψ3(λ), we have
∑n+4
i=1 b3,ib1,i(li(λ))−1 =

∑n+4
i=1 b3,ib2,i(li(λ))−1 =

0. Multiplying through by l1(λ) · · · ln+4(λ), we obtain 2 equations in two variables of degree ≤ n + 3
which, by Bézout’s theorem, implies there are at most (n+ 3)2 solutions. Observe that this count also
includes cusp-like singularities, which occur when the tangent space at λ is a degenerate plane.

• Critical points arising from the intersection of two ‘sheets’ of ∇A: These are pairs λ, λ′ ∈ R2 satisfying

Ψ(λ) = (ψ1(λ), ψ2(λ), ψ3(λ)) = (ψ1(λ′), ψ2(λ′), ψ3(λ′)) = Ψ(λ′) and

π3 ((Ψ1(λ)×Ψ2(λ))× (Ψ1(λ′)×Ψ2(λ′))) = 0

which is a (4(n+ 3), 2)-dense system with 2(n+ 4) + 1 factors. Counting sign combinations, there are
at most

e2 + 3

4
2(2

2)(2n+ 9)2(4n+ 12)2
1

4
(n2 + 9n+ 11)2

isolated solutions.

• Critical points arising from the intersection of 3 ‘sheets’ of ∇A: These are triples λ, λ′, λ′′ ∈ R2 such
that Ψ(λ) = Ψ(λ′) = Ψ(λ′′), which is a 6 × 6 sheared system with 3(n + 4) = (3n + 6) + 6 factors.
Since we may permute {λ, λ′, λ′′}, there are at most

1

3!
· e

2 + 3

4
2(6

2)(3n+ 6)6
1

8
(n2 + 9n+ 22)3 = (e2 + 3)2935(n+ 2)6(n2 + 9n+ 22)3

critical points arising from triple intersections.

• x- and y-plane Intersections: Consider when two sheets of Ω intersect the plane {x = 0}. This occurs
for λ, λ′ ∈ R2 such that Ψ(λ) = Ψ(λ′) and ψ1(λ) = ψ1(λ′) = 0, which occurs when `i(λ) = 0
for i in a set of cardinality of at most n + 3 (since b3,i > 0 for at most n + 3 many i). This is a

(1, 4)-dense system with n + 5 factors having at most e2+3
4 2(4

2)(n + 5)4 solutions. Doing the same for
the set {y = 0} and accounting for sign combinations and permutations of λ, λ′, there are at most
e2+3
4 2(4

2)(n + 5)4(n + 3) 1
4 (n2 + 9n + 22)2 solutions. Other intersections may arise for λ ∈ R2 with

ψ2(λ) = ψ3(λ) = 0, which has at most
(
n+4
2

)
solutions. Finally, nodes in the plane {x = 0} occur for

λ ∈ R2 with ψ1(λ) = 0 and (Ψ1(λ) × Ψ2(λ)) × ~e1 = 0, which is equivalent to solving one of at most
n+ 3 many systems of polynomials of degree 1 and 2(n+ 3). Since we may do the same for the plane
{y = 0}, there are at most 4(n+ 3)2 solutions.

Therefore, we have

M3(A) ≤ (n+ 3)2 + (e2 + 3)(2n+ 9)2(n+ 3)2(n2 + 9n+ 11)2 + (e2 + 3)2935(n+ 2)6(n2 + 9n+ 22)3

+ (e2 + 3)22(n+ 5)4(n+ 3)(n2 + 9n+ 22)2 +
(n+ 4)(n+ 3)

2
+ 4(n+ 2)2

Next, fix c not equal to one of the critical values identified above, and consider Ω ∩ {(x, y, z) ∈ R3 | z = c}.
Let M2(A) be the number of critical points of π2 restricted to this set.

• Critical points: This occurs for λ ∈ R2 such that ψ3(λ) = c and the intersection of the tangent space
at λ and the hyperplane defined by z = 0 has y-component = 0:

0 = π2((Ψ1(λ)×Ψ2(λ))× ~e3)

Observe that this also includes cusps, which occur intersection of the tangent space at λ with the
hyperplane defined by z = 0 is degenerate. This is a (2(n+ 3), 2)-dense system with n+ 5 factors and

therefore at most e2+3
4 2(2

2)(n+ 5)2(2(n+ 3))2 1
2 (n2 + 9n+ 22) solutions.

• Intersections: When two λ, λ′ ∈ R2 such that Ψ(λ) = Ψ(λ′) and ψ3(λ) = ψ3(λ′) = c? This is a 4 × 4
sheared system, so accounting for permutations of λ, λ′, we have at most

1

2
· e

2 + 3

4
2(4

2)(2n+ 4)4
1

4
(n2 + 9n+ 22)2 = (e2 + 4)23(n+ 2)4(n2 + 9n+ 22)2

solutions.
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• x-axis Intersections: This occurs for λ such that ψ1(λ) = 0 and ψ1(λ) = c. The former occurs when
`i(λ) = 0 for some i (out of n+3 possible). This is a (1, 2)-dense system with n+5 factors. Accounting

for sign combinations, there are at most e2+3
4 (n+ 5)2(n+ 3) 1

2 (n2 + 9n+ 22) solutions.

Thus, we have

M2(A) ≤ e2 + 3

4

(
2(n+ 5)2(n+ 3)2(n2 + 9n+ 22) + 2(n+ 2)4(n2 + 9n+ 22)2 + (n+ 5)2(n+ 3)

1

2
(n2 + 9n+ 22)

)
Next, fix c′ not equal to one of the critical values identified above. Leting M1(A) be the number of critical
points of π1 restricted to Ω ∩ {(x, y, z) ∈ R3 | y = c′, z = c}, we see that this is equal to the number of
intersections of the line defined by y = c′, z = c and Ω. This is equivalent to counting the number of λ ∈ R2

such that ψ2(λ) = c′ and ψ3(λ) = c, which is a 2× 2 sheared system with n+ 4 factors. Accounting for sign
combinations of (`1(λ), · · · , `n+4(λ)) and at most one intersection with the plane {x = 0}, we have

M1(A) ≤ e2 + 3

4
2(2

2)(n+ 2)2
1

2
(n2 + 9n+ 22) + 1

solutions.
Taken together, the number of discriminant chambers is bounded above by

(M1(A) + 1)(M2(A) + 1)(M3(A) + 1) = O(n24)
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