1. Find

\[\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}. \]

This is a telescoping series. \(1/(n+1)(n+2)) = 1/(n+1) - 1/(n+2),\)
so \(1/(n(n+1)(n+2)) = 1/n(1/(n+1) - 1/(n+2)) = 1/n - 1/(n+1) -
(1/2)((1/n) - 1/(n+2)).\) Now summing the first piece of this gives 1/1,
while with the second piece, the first two terms survive untelescoped so
we have a contribution of \(-(1/2)(1 + 1/2) = -3/4.\) Since \(1 - 3/4 = 1/4,\)
the answer to the question is 1/4.

2. Lake Cony has a radius of 1000 meters and fills a conical depression 100
meters deep. Water masses 1000 kg per cubic meter, and the acceleration
due to gravity is 9.81 meters/second^2. A joule is the energy needed to
accelerate a mass of 1 kilogram to a speed of 1 meter per second. Find
the energy (expressed in joules) needed to pump lake Cony dry.

This is a method-of-disks integral problem. The disk that is \(x\) meters
off the bottom of the lake has a radius of 10\(x\) meters, and an area of
100\(\pi x^2\). It must be raised \((100 - x)\) meters. Thus we have \(\int_{x=0}^{100} 100\pi x^2(100 - x) \, dx\)
cubic-meter-meter lifts of work to do. To lift one cubic meter of water
one meter is to move 1000 kgs with a force of 9.81 newtons each, up
one meter, and that takes 9810 joules. Grinding out the details gives
8.175\(\pi E12\) joules.

3. Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n,\) where \(a_0 = 1, \ a_1 = 1/2, \ a_2 = -1/8, \ a_3 = 1/16, \ a_4 = -5/128,\) and in general, for \(n \geq 1, \ a_n = -(n - 3/2)a_{n-1}/n.\)

(a) Find \(a_5.\) The rule specifying the general case gives \(a_5 = -(5 - 3/2)a_4/5,\) and \(a_4 = -5/128,\) so \(a_5 = -(5 - 3/2)(-5/128)/5 = 7/256.\)

(b) Multiply out \(f(x) \cdot f(x)\) at least to the \(x^4\) term and then take an
informed guess at a simple formula for \(f(x)^2.\) This would amount to
expanding \((1 + x/2 - (1/8)x^2 + (1/16)x^3 - 5/128x^4 + \cdots)^2\) and
this multiplies out to \(1 + x + 0x^2 + 0x^3 + 0x^4 + ?x^5 + \cdots.\) (The coefficient
on \(x^4\) in the expansion is \(2 \cdot (-5/128 + (1/16) + 1/2) + (-1/8)^2 = 0,\)
and the others are easier.) Guess: \(f(x)^2 = 1 + x.\)

(c) Prove your guess. The series for \(f(x)\) is the Taylor’s series expansion
for \((1 + x)^{1/2}\) about \(x = 0\) because the \(n\)th derivative at zero of
\((1 + x)^{1/2}\) is the product of \((1/2 - j)\) over \(j\) from 0 to \(n - 1,\) and
that’s equivalent to the product of \((3/2 - k)\) over \(k\) from 1 to \(n,\) and
then we have to divide by \(n!\) to get the coefficient in the Taylor’s
series. This product obeys exactly the recursive rule given in the
problem, relating \(a_n\) to \(a_{n-1},\) because to extend the product by one
step from \(n - 1 \) to \(n \) we multiply by \(n - 3/2 \) and then the \(n! \) brings in a factor of \(1/n \).

4. Suppose \(g(x) \) is continuous and differentiable everywhere, and \(g''(x) > 0 \) for all \(x \). Let \(h(x) = \int_0^x g(t) \, dt \).

(a) Sketch a few possibilities for the graphs of \(g(x) \) and the corresponding \(h(x) \).

(b) Prove that the graph of \(h(x) \) can cross the \(x \)-axis at most three times. Between any two crossings by \(h(x) \) of the \(x \)-axis, there must be a point at which the derivative of \(h \), which is \(g \) is zero. (Rolle’s theorem). But \(g \) is concave up because its second derivative is positive, so \(g' \) is strictly increasing. Thus there can be at most one place at which \(g' = 0 \). Between any two zeros of \(g \) there must be one zero of \(g' \), so \(g \) can have at most two places where it’s zero. That means at most three crossings of the \(x \)-axis by \(h \), as required.

5. For \(n \geq 1 \), let \(f_n(x) = nx e^{-nx^2} \). The graph of \(f_1(x) \) is shown:
(a) Sketch the functions $f_1(x)$, $f_2(x)$, and so on, all on the same graph.

(b) For $x > 0$, find $\lim_{n \to \infty} f_n(x)$. That’s zero. Using L’Hospital’s rule with n as our variable, we have

$$
\lim_{n \to \infty} \frac{nx}{\exp(nx^2)} = \lim_{n \to \infty} \frac{(d/dn)(nx)}{(d/dn)\exp(nx^2)} = \lim_{n \to \infty} \frac{x}{x \infty} = 0.
$$

(c) Find $\int_{x=0}^{x=\infty} f_n(x) \, dx$. With the change of variable $u = nx^2$, $du = 2nx \, dx$ each of these integrals becomes $\int_{u=0}^{\infty} (1/2)e^{-u} \, du = 1/2$. All the integrals evaluate to $1/2$. The moral of the story is that the integral of the limit need not be equal to the limit of the integrals.