Properties of Wronski map of Grassmannians of spaces of solutions of linear differential operators

Yanhe Huang

Mentor: Igor Zelenko

School of Mathematics and System Science, Beihang University and Texas A&M University

May 13, 2015
Wronskian of a space of functions

\[\Lambda = \text{span}\{f_1(t), f_2(t), \ldots, f_m(t)\}, \quad \text{dim } \Lambda = m \]

\[\text{Wr}(f_1(t), f_2(t), \ldots, f_m(t)) := \det \begin{pmatrix}
 f_1(t) & f_2(t) & \cdots & f_m(t) \\
 f'_1(t) & f'_2(t) & \cdots & f'_m(t) \\
 \vdots & \vdots & \ddots & \vdots \\
 f^{(m-1)}_1(t) & f^{(m-1)}_2(t) & \cdots & f^{(m-1)}_m(t)
\end{pmatrix} \]

Change of basis \(\rightarrow\) multiplication of Wronskian by a constant
Wronskian of a space of functions

\[\Lambda = \text{span}\{f_1(t), f_2(t), \ldots, f_m(t)\}, \quad \text{dim } \Lambda = m \]

\[\text{Wr}(f_1(t), f_2(t), \ldots, f_m(t)) := \det \begin{pmatrix}
 f_1(t) & f_2(t) & \cdots & f_m(t) \\
 f'_1(t) & f'_2(t) & \cdots & f'_m(t) \\
 \vdots & \vdots & \ddots & \vdots \\
 f^{(m-1)}_1(t) & f^{(m-1)}_2(t) & \cdots & f^{(m-1)}_m(t)
\end{pmatrix} \]

Change of basis \(\rightarrow\) multiplication of Wronskian by a constant
Wronskian of a space of functions

\[\Lambda = \text{span}\{f_1(t), f_2(t), \ldots, f_m(t)\}, \quad \dim \Lambda = m \]

\[\text{Wr}(f_1(t), f_2(t), \ldots, f_m(t)) := \det \begin{pmatrix} f_1(t) & f_2(t) & \ldots & f_m(t) \\ f'_1(t) & f'_2(t) & \ldots & f'_m(t) \\ \vdots & \vdots & \ddots & \vdots \\ f^{(m-1)}_1(t) & f^{(m-1)}_2(t) & \ldots & f^{(m-1)}_m(t) \end{pmatrix} \]

Change of basis \(\rightarrow\) multiplication of Wronskian by a constant
If $\Lambda \in \text{Gr}_m(\text{Pol}_{m+p-1})$ is an $(m + p)$–dimensional space of univariant polynomials of degree at most $m + p - 1$, we will have

$$\text{Wr} : \text{Gr}_m(\text{Pol}_{m+p-1}) \longrightarrow \mathbb{P}(\text{Pol}_{mp})$$

Schubert in 1886 showed that the Wronski map is surjective and the general polynomial in $\mathbb{P}(\text{Pol}_{mp})$ has

$$\#_{m,p} = \frac{1!2! \ldots (p-1)! \cdot (mp)!}{m!(m+1)! \ldots (m + p - 1)!}$$

preimages.

Pol_{m+p-1} is a space of solution of $x^{(m+p)} = 0$.

Natural question: What about the preimage of Wronski map for a space of solution of a general homogeneous linear differential operator?
If $\Lambda \in \text{Gr}_m(\text{Pol}_{m+p-1})$ is an $(m + p)$-dimensional space of univariant polynomials of degree at most $m + p - 1$, we will have

$$\text{Wr} : \text{Gr}_m(\text{Pol}_{m+p-1}) \longrightarrow \mathbb{P}(\text{Pol}_{mp})$$

Schubert in 1886 showed that the Wronski map is surjective and the general polynomial in $\mathbb{P}(\text{Pol}_{mp})$ has

$$\#_{m,p} = \frac{1!2! \ldots (p-1)! \cdot (mp)!}{m!(m+1)! \ldots (m+p-1)!}$$

preimages.

- Pol_{m+p-1} is a space of solution of $x^{(m+p)} = 0$.
- **Natural question:** What about the preimage of Wronski map for a space of solution of a general homogeneous linear differential operator?
If $\Lambda \in \text{Gr}_m(\text{Pol}_{m+p-1})$ is an $(m+p)$–dimensional space of univariant polynomials of degree at most $m + p - 1$, we will have

$$\text{Wr} : \text{Gr}_m(\text{Pol}_{m+p-1}) \longrightarrow \mathbb{P}(\text{Pol}_{mp})$$

Schubert in 1886 showed that the Wronski map is surjective and the general polynomial in $\mathbb{P}(\text{Pol}_{mp})$ has

$$\#_{m,p} = \frac{1!2! \ldots (p-1)! \cdot (mp)!}{m!(m+1)!(m+p-1)!}$$

preimages.

Pol_{m+p-1} is a space of solution of $x^{(m+p)} = 0$.

Natural question: What about the preimage of Wronski map for a space of solution of a general homogeneous linear differential operator?
If $\Lambda \in \text{Gr}_m(\text{Pol}_{m+p-1})$ is an $(m + p)$–dimensional space of univariant polynomials of degree at most $m + p - 1$, we will have

$$\text{Wr} : \text{Gr}_m(\text{Pol}_{m+p-1}) \longrightarrow \mathbb{P}(\text{Pol}_{mp})$$

Schubert in 1886 showed that the Wronski map is surjective and the general polynomial in $\mathbb{P}(\text{Pol}_{mp})$ has

$$\#_{m,p} = \frac{1!2!\ldots(p-1)! \cdot (mp)!}{m!(m+1)! \ldots (m+p-1)!}$$

preimages.

Pol_{m+p-1} is a space of solution of $x^{(m+p)} = 0$.

Natural question: What about the preimage of Wronski map for a space of solution of a general homogeneous linear differential operator?
Let V_L be the space of solution of $Lx = 0$.

$W_\text{r} : \text{Gr}_m(V_L) \rightarrow \mathbb{P}(C^\infty)$.

- Wronski map on $\text{Gr}_m(V)$ is *strongly non-injective* if the preimage of a general point in the image contains more than one point.
- Wronski map on $\text{Gr}_m(V)$ is *essentially injective* if the preimage of a general point in the image contains only one point.
\[Lx = x^{(2m)}(t) + a_{2m-1}(t)x^{(2m-1)}(t) + \ldots + a_0(t)x(t) \]

Let \(V_L \) be the space of solution of \(Lx = 0 \).

\[\text{Wr} : \text{Gr}_m(V_L) \longrightarrow \mathbb{P}(C^\infty) . \]

- Wronski map on \(\text{Gr}_m(V) \) is strongly non-injective if the preimage of a general point in the image contains more than one point.
- Wronski map on \(\text{Gr}_m(V) \) is essentially injective if the preimage of a general point in the image contains only one point.
Natural generalization

\[Lx = x^{(2m)}(t) + a_{2m-1}(t)x^{(2m-1)}(t) + \ldots + a_0(t)x(t) \]

Let \(V_L \) be the space of solution of \(Lx = 0 \).

\[\text{Wr} : \text{Gr}_m(V_L) \longrightarrow \mathbb{P}(C^\infty) . \]

- Wronski map on \(\text{Gr}_m(V) \) is **strongly non-injective** if the preimage of a general point in the image contains more than one point.

- Wronski map on \(\text{Gr}_m(V) \) is **essentially injective** if the preimage of a general point in the image contains only one point.
Case of Self-adjoint operator

L is called **self-adjoint** if

$$
\int_a^b L u \, v \, dt = \int_a^b u \, L v \, dt + A_{a,b}(u,v)
$$

where $A_{a,b}(u,v) = \sigma_b(u,v) - \sigma_a(u,v)$.

The restriction of σ to the space of solution V_L is a skew symmetric form on V_L.

Proposition

(Hein-Sottile-Zelenko, 2012, for $Lx = x^{(2m)}$; Zelenko for general self-adjoint L) If L is self-adjoint, then $\text{Wr}(\Lambda) = \text{Wr}(\Lambda^\perp)$ where Λ^\perp is the skew-symmetric complement w.r.t the form $\sigma \Rightarrow$ strong noninjectivity

Question: Is there a non-self adjoint operator for which the corresponding Wronski map is strongly non-injective?
L is called **self-adjoint** if

$$\int_{a}^{b} Luv \, dt = \int_{a}^{b} uLv \, dt + A_{a,b}(u,v)$$

where $A_{a,b}(u,v) = \sigma_{b}(u,v) - \sigma_{a}(u,v)$.

The restriction of σ to the space of solution V_L is a skew symmetric form on V_L.

Proposition

(Hein-Sottile-Zelenko, 2012; Zelenko for general self-adjoint L) If L is self-adjoint, then $\text{Wr}(\Lambda) = \text{Wr}(\Lambda^\perp)$ where Λ^\perp is the skew-symmetric complement w.r.t the form $\sigma \Rightarrow$ strong noninjectivity

Question: Is there a non-self adjoint operator for which the corresponding Wronski map is strongly non-injective?
Case of Self-adjoint operator

L is called \textit{self-adjoint} if

$$
\int_{a}^{b} Luv \, dt = \int_{a}^{b} uLv \, dt + A_{a,b}(u,v)
$$

where $A_{a,b}(u,v) = \sigma_{b}(u,v) - \sigma_{a}(u,v)$.

The restriction of σ to the space of solution V_{L} is a skew symmetric form on V_{L}.

Proposition

\textit{(Hein-Sottile-Zelenko, 2012, for $Lx = x^{(2m)}$; Zelenko for general self-adjoint L)} If L is self-adjoint, then $\text{Wr}(\Lambda) = \text{Wr}(\Lambda^{\angle})$ where Λ^{\angle} is the skew-symmetric complement w.r.t the form $\sigma \Rightarrow \text{strong noninjectivity}$

Question: Is there a non-self adjoint operator for which the corresponding Wronski map is strongly non-injective?
Geometric setting

Let $C(t)$ be a natural curve in \mathbb{PV}^*,

$$C(t) := \{p \in V^* : \langle p, x(\cdot) \rangle = 0 \quad \forall x(\cdot) \in V, \text{ such that } x(t) = 0\},$$

Let $c(t) \subset V^*$ such that $C(t) = \text{span}\{c(t)\}$,

$$C^{(i)}(t) := \text{span} \left(c(t), c'(t), \ldots, c^{(i)}(t) \right)$$

Plücker embedding $\mathbb{P}^X_m : Gr_m(X) \to \mathbb{P}(\wedge^m X) :$

$$\text{span}(x_1, \ldots, x_m) \to x_1 \wedge x_2 \ldots \wedge x_m$$
Geometric setting

Let $C(t)$ be a natural curve in $\mathbb{P}V^*$,

$$C(t) := \{ p \in V^* : \langle p, x(\cdot) \rangle = 0 \quad \forall x(\cdot) \in V, \text{ such that } x(t) = 0 \} ,$$

Let $c(t) \subset V^*$ such that $C(t) = \text{span}\{c(t)\}$,

$$C^{(i)}(t) := \text{span} \left(c(t), c'(t), \ldots, c^{(i)}(t) \right)$$

Plücker embedding $\text{Pl}_m^X : \text{Gr}_m(X) \to \mathbb{P}^{\wedge^m X}$:

$$\text{span}(x_1, \ldots, x_m) \to x_1 \wedge x_2 \ldots \wedge x_m$$
Geometric setting

Let \(C(t) \) be a natural curve in \(\mathbb{P}V^* \),

\[
C(t) := \{ p \in V^* : \langle p, x(\cdot) \rangle = 0 \quad \forall x(\cdot) \in V, \text{ such that } x(t) = 0 \} ,
\]

Let \(c(t) \subset V^* \) such that \(C(t) = \text{span}\{ c(t) \} \),

\[
C^{(i)}(t) := \text{span} \left(c(t), c'(t), \ldots, c^{(i)}(t) \right)
\]

Plücker embedding \(\mathbb{P}^1_{m} : Gr_m(X) \rightarrow \mathbb{P}(\wedge^m X) : \)

\[
\text{span}(x_1, \ldots, x_m) \rightarrow x_1 \wedge x_2 \ldots \wedge x_m
\]
Wronski map and Plücker embedding

\[S_L := \text{span}_t \text{Pl}^V_m(C^{(m-1)}(t)) \subset \mathbb{P}(\wedge^m V^*) \]

\[A_L := \{ \omega \in (\wedge^m V^*)^* = \wedge^m V : \omega|_{S_L} = 0 \} = S_L^\perp. \]

Let \(\pi : \wedge^m V \to \wedge^m V/A_L \) be the canonical projection and

\[\widetilde{Wr} := \pi \circ \text{Pl}^V_m : \text{Gr}_m(V) \to \wedge^m V/A_L. \]

Proposition

Injectivity properties of \(Wr \) are the same as of \(\widetilde{Wr} \).

Proposition

If \(S_L = \mathbb{P}(\wedge^m V^) \) or, equivalently \(A_L = 0 \) \(\Rightarrow \) \(Wr \) is injective.*
If \(m = 2 \), \(\dim A_L \geq 1 \Leftrightarrow \) there \(\exists \) a 2-form (symplectic form) \(\omega \) s.t.
\[\omega|_{C(m-1)(t)} = 0 \Leftrightarrow L \text{ is self-adjoint.} \]

What about \(m = 3 \)?

If \(L \) is self-adjoint, then \(\dim A_L \geq 6 \).
If \(L \) is trivial \(Lx = x^{(6)} \), then \(\dim A_L = 10 \) (iff).

The method is to study classical injectivity properties of \(\pi_K \circ \text{Pl}_m \)
where \(\pi_K : \wedge^m V \to \wedge^m V/K \) with \(\dim K = 1 \), \(K \subset A_L \).

\(\text{Gl}_{2m}(V) \) acts on \(\wedge^m V \), or to be specific, \(\mathbb{P}(\wedge^m V) \).

It is enough to consider this problem for a representative of each orbit under this action.
Reduction to the study of orbits

- If \(m = 2 \), \(\dim A_L \geq 1 \iff \exists \) a 2-form (symplectic form) \(\omega \) s.t. \(\omega|_{\mathcal{C}(m-1)(t)} = 0 \iff L \) is self-adjoint.
- What about \(m = 3 \)?

If \(L \) is self-adjoint, then \(\dim A_L \geq 6 \).
If \(L \) is trivial \(Lx = x^{(6)} \), then \(\dim A_L = 10 \) (iff).

The method is to study classical injectivity properties of \(\pi_K \circ \text{Pl}_m^V \)
where \(\pi_K : \wedge^m V \to \wedge^m V/K \) with \(\dim K = 1, \ K \subset A_L \).

\(Gl_{2m}(V) \) acts on \(\wedge^m V \), or to be specific, \(\mathbb{P}(\wedge^m V) \).
It is enough to consider this problem for a representative of each orbit under this action.
Reduction to the study of orbits

- If $m = 2$, $\dim A_L \geq 1 \iff$ there \exists a 2-form (symplectic form) ω s.t. $\omega|_{C(m-1)(t)} = 0 \iff L$ is self-adjoint.

- What about $m = 3$?

If L is self-adjoint, then $\dim A_L \geq 6$.
If L is trivial $Lx = x^{(6)}$, then $\dim A_L = 10$ (iff).

The method is to study classical injectivity properties of $\pi_K \circ \text{Pl}_m^V$ where $\pi_K : \wedge^m V \to \wedge^m V / K$ with $\dim K = 1$, $K \subset A_L$.

$Gl_{2m}(V)$ acts on $\wedge^m V$, or to be specific, $\mathbb{P}(\wedge^m V)$.

It is enough to consider this problem for a representative of each orbit under this action.
If $m = 2$, $\dim A_L \geq 1 \iff$ there \exists a 2-form (symplectic form) ω s.t. $\omega|_{C(m-1)(t)} = 0 \iff L$ is self-adjoint.

What about $m = 3$?

If L is self-adjoint, then $\dim A_L \geq 6$.
If L is trivial $Lx = x^{(6)}$, then $\dim A_L = 10$ (iff).

The method is to study classical injectivity properties of $\pi_K \circ \text{Pl}_m^V$ where $\pi_K : \wedge^m V \to \wedge^m V/K$ with $\dim K = 1$, $K \subset A_L$.

$Gl_{2m}(V)$ acts on $\wedge^m V$, or to be specific, $\mathbb{P}(\wedge^m V)$.

It is enough to consider this problem for a representative of each orbit under this action.
If $m = 2$, $\dim A_L \geq 1 \iff$ there \exists a 2-form (symplectic form) ω s.t. $\omega|_{C^1} = 0 \iff L$ is self-adjoint.

What about $m = 3$?

If L is self-adjoint, then $\dim A_L \geq 6$.
If L is trivial $Lx = x^{(6)}$, then $\dim A_L = 10$ (iff).

The method is to study classical injectivity properties of $\pi_K \circ \text{Pl}_m^V$ where $\pi_K : \wedge^m V \rightarrow \wedge^m V/K$ with $\dim K = 1$, $K \subset A_L$.

$Gl_{2m}(V)$ acts on $\wedge^m V$, or to be specific, $\mathbb{P}(\wedge^m V)$.

It is enough to consider this problem for a representative of each orbit under this action.
Classification of orbits

Image of Plücker embedding = Plücker manifold. For $m = 3$, there are 5 different orbits under this action

- $\omega_0 = e_{123} + e_{456}$: open orbit O_0;
- $\omega_1 = e_{126} + e_{135} + e_{234}$: codim 1 orbit O_1, the closure is tangential variety of Plücker manifold;
- $\omega_5 = e_1 \wedge (e_{23} + e_{45})$: codim 5 orbit O_5, the union of lines connecting two points in Plücker manifold such that the 3-planes corresponding to these two points intersect in a line;
- $\omega_{10} = e_{123}$: codim 10 orbit O_{10}, Plücker manifold;
- $\omega_{20} = 0$.
Results

- If $K \subset O_0 \rightarrow$ one pair of 3-planes with the same Wronskian.
- If $K \subset O_1 \rightarrow$ classically injective.
- If $K \subset O_5 \rightarrow$ 4-parametric family of pairs of 3-planes with same Wronskian.

Theorem

If $\dim A_L < 10$ and $\dim A_L \cap O_5 \leq 5$, *then* Wr *is essentially injective.*

Corollary

If $\dim A_L \leq 5$, *then* Wr *is essentially injective.*

Theorem

If $\dim A_L = 6$ and Wr *is strongly non-injective, then* L *is self-adjoint.*
Thanks for your attention.