Efficiently Testing Thermodynamic Compliance of Chemical Reaction Networks

Meredith McCormack-Mager, Carlos Munoz, Zev Woodstock

20 July 2015
Chemical Reaction Networks

A ⇌ B

A + C → D

B + E
Thermodynamic Analysis

Second Law of Thermodynamics
In any closed system, the entropy of the system will either remain constant or increase.

A+B → C
B → A
B → C
Thermodynamic Analysis

Second Law of Thermodynamics
In any closed system, the entropy of the system will either remain constant or increase.

Question
Can we quickly determine when a chemical reaction network is thermodynamically feasible?
Previous Work

Algorithm (Beard et al., 2004)
Determines if a chemical reaction network is thermodynamically feasible for a given set of reaction rates.

- Step 1: Form stoichiometric matrix from reaction network.
- Step 2: Compute nullspace of stoichiometric matrix.
- Step 3: Compute signed vectors of nullspace.
- Step 4: Check orthogonality between flux vector and “cycles”.

Chemical Reaction Network

\[
\begin{bmatrix}
-1 & -1 & 1 \\
0 & 1 & -1 \\
1 & 0 & 0
\end{bmatrix}
\] Stoichiometric Matrix

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix}
\] Stoichiometric Nullspace

\[
\begin{bmatrix}
0 \\
-
\end{bmatrix}
\] Signed Vector
What is a cycle?

Signed Support of a Vector

The positive/negative support of a vector is the set of indices at which the vector has a positive/negative value.

\[v = (1, -1, 0, 1, 1, -1) \]

\[v^+ = \{1, 4, 5\} \]

\[v^- = \{2, 6\} \]

Cycle

A cycle is a signed vector with minimal signed support.

\[w = (1, -1, 0, 0, 0, 0) \]

\[w^+ = \{1\} \]

\[w^- = \{2\} \]
What is a cycle?

A cycle is a signed vector with minimal signed support.

Signed Support of a Vector

The positive/negative support of a vector is the set of indices at which the vector has a positive/negative value.

\[v = (1, -1, 0, 1, 1, -1) \]

\[v^+ = \{1, 4, 5\} \]

\[v^- = \{2, 6\} \]

\[w = (1, -1, 0, 0, 0, 0) \]

\[w^+ = \{1\} \]

\[w^- = \{2\} \]
What is a cycle?

Signed Support of a Vector

The *positive/negative support* of a vector is the set of indices at which the vector has a positive/negative value.

\[v = (1, -1, 0, 1, 1, -1) \]

\[v^+ = \{1, 4, 5\}, \quad v^- = \{2, 6\} \]
What is a cycle?

Signed Support of a Vector

The *positive/negative support* of a vector is the set of indices at which the vector has a positive/negative value.

\[v = (1, -1, 0, 1, 1, -1) \quad v^+ = \{1, 4, 5\}, \quad v^- = \{2, 6\} \]

Cycle

A *cycle* is a signed vector with minimal signed support.

\[w = (1, -1, 0, 0, 0, 0) \quad w^+ = \{1\}, \quad w^- = \{2\} \]
Cycle Axioms

1. If α is a cycle, then $-\alpha$ is a cycle.

2. If α and β are cycles, and the signed support of α is contained in the signed support of β, then $\alpha = \beta$ or $\alpha = -\beta$.

3. Suppose α and β are cycles such that $\alpha \neq -\beta$, and i is an index with $\alpha_i = +$ and $\beta_i = -$. Then there exists a cycle γ with $\gamma^+ \subseteq (\alpha^+ \cup \beta^+)$ and $\gamma^- \subseteq (\alpha^- \cup \beta^-)$.
Row-Reduced Echelon Basis

Let $\xi \subseteq \mathbb{R}^n$ be a k-dimensional subspace. Then let $B = \{v_1, \ldots, v_k\}$ be a basis for ξ such that

$$
\begin{pmatrix}
 v_1 \\
 \vdots \\
 v_k
\end{pmatrix}
$$

is in Reduced Row Echelon form.

Ex.

$$
\begin{pmatrix}
 1 & 0 & 0 & -3 & -2 \\
 0 & 1 & 0 & -2 & 4 \\
 0 & 0 & 1 & 1 & -1
\end{pmatrix}
$$
Theorem
The signed vector of every basis vector is a cycle.

Definitions
Vectors v and w have a disagreement if there exists an index ℓ such that v_ℓ and w_ℓ have opposite signs, i.e. one is negative and one is positive.

We say that a resolution vector u is a linear combination of v and w such that $u_\ell = 0$.

$v = (1, 0, -3), w = (0, 1, 4) \rightarrow 4v + 3w = (4, 3, 0)$

Theorem
The signed vector of any pairwise resolution of basis vectors is a cycle.
Computing Cycles

Theorem
The signed vector of every basis vector is a cycle.

Definitions
Vectors v and w have a *disagreement* if there exists an index ℓ such that v_ℓ and w_ℓ have opposite signs, i.e. one is negative and one is positive.
Computing Cycles

Theorem
The signed vector of every basis vector is a cycle.

Definitions
Vectors v and w have a *disagreement* if there exists an index ℓ such that v_ℓ and w_ℓ have opposite signs, i.e. one is negative and one is positive.

We say that a *resolution vector* u is a linear combination of v and w such that $u_\ell = 0$.

$v = (1, 0, -3), \ w = (0, 1, 4) \quad 4v + 3w = (4, 3, 0)$
Computing Cycles

Theorem
The signed vector of every basis vector is a cycle.

Definitions
Vectors v and w have a *disagreement* if there exists an index ℓ such that v_ℓ and w_ℓ have opposite signs, i.e. one is negative and one is positive.

We say that a *resolution vector* u is a linear combination of v and w such that $u_\ell = 0$.

$v = (1, 0, -3), \ w = (0, 1, 4) \quad 4v + 3w = (4, 3, 0)$

Theorem
The signed vector of any pairwise resolution of basis vectors is a cycle.
Computing Cycles

Ex.

\[N = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix} \]

Then \((+, 0, 0, +, +, 0), (0, +, 0, -, 0, +), \) and \((0, 0, +, 0, -, -)\) are cycles.

And \((+, +, 0, 0, +, +), (+, 0, +, +, 0, -), \) and \((0, +, +, -, -, 0)\) are cycles.

But \(\text{sgn}(v_1 + v_2 + v_3) = (+, +, +, 0, 0, 0)\) is also a cycle.

Bad News

Depending on the number of disagreements between basis vectors, we could have \(2^k - 1\) independent cycles in \(C\).
Computing Cycles

Ex.

\[N = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix} \]

Then (+, 0, 0, +, +, 0), (0, +, 0, -, 0, +), and (0, 0, +, 0, -, -) are cycles.
Computing Cycles

Ex.

\[N = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix} \]

Then \((+, 0, 0, +, +, 0), (0, +, 0, -, 0, +), \) and \((0, 0, +, 0, -, -)\) are cycles.

And \((+, +, 0, 0, +, +), (+, 0, +, +, 0, -), \) and \((0, +, +, -, -, 0)\) are cycles.
Computing Cycles

Ex.

\[N = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix} \]

Then \((+, 0, 0, +, +, 0), (0, +, 0, -, 0, +), \) and \((0, 0, +, 0, -, -)\) are cycles.

And \((+, +, 0, 0, +, +), (+, 0, +, +, 0, -), \) and \((0, +, +, -, -, 0)\) are cycles.

But \(\text{sgn}(v_1 + v_2 + v_3) = (+, +, +, 0, 0, 0)\) is also a cycle.
Computing Cycles

Ex.

\[
N = \begin{pmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 1 & 1 & 0 \\
 0 & 1 & 0 & -1 & 0 & 1 \\
 0 & 0 & 1 & 0 & -1 & -1
\end{pmatrix}
\]

Then (+, 0, 0, +, +, 0), (0, +, 0, -, 0, +), and (0, 0, +, 0, -, -) are cycles.

And (+, +, 0, 0, +, +), (+, 0, +, +, 0, -), and (0, +, +, -, -, 0) are cycles.

But \(\text{sgn}(v_1 + v_2 + v_3) = (+, +, +, 0, 0, 0) \) is also a cycle.

Bad News

Depending on the number of disagreements between basis vectors, we could have \(2^k - 1 \) independent cycles in \(C \).
Sign Orthogonality

Two sign vectors are orthogonal if there is an index i at which they have the same (nonzero) sign and another index j at which they have opposite signs.

$$(+, +, 0) \perp (+, -, -) \quad (+, +, 0) \not\perp (+, 0, -)$$
Exponential Condition

Sign Orthogonality
Two sign vectors are *orthogonal* if there is an index i at which they have the same (nonzero) sign and another index j at which they have opposite signs.

$$(+, +, 0) \perp (+, -, -) \quad (+, +, 0) \nparallel (+, 0, -)$$

Orthogonality to $\text{sgn}($Flux Vector$)$
There exists a cycle *not orthogonal* to the signed vector of the flux vector if there is $\alpha \in \mathbb{N}$ such that each entry of α is nonnegative.

$$(1, 1, 1) \nparallel (1, 0, 1)$$
Determining Orthogonality

Ex.

\[
\begin{pmatrix}
1 & 0 & 0 & -3 & -2 \\
0 & 1 & 0 & -2 & 4 \\
0 & 0 & 1 & 1 & -1
\end{pmatrix}
\]
Determining Orthogonality

Ex.

\[
\begin{pmatrix}
1 & 0 & 0 & -3 & -2 \\
0 & 1 & 0 & -2 & 4 \\
0 & 0 & 1 & 1 & -1 \\
\end{pmatrix}
\]

Suppose there exists \(w \) such that all entries in \(w \) are nonnegative.
Determining Orthogonality

Ex.

\[
\begin{pmatrix}
1 & 0 & 0 & -3 & -2 \\
0 & 1 & 0 & -2 & 4 \\
0 & 0 & 1 & 1 & -1
\end{pmatrix}
\]

Suppose there exists \(w \) such that all entries in \(w \) are nonnegative.

Then \(w = c_1 v_1 + c_2 v_2 + c_3 v_3 \).
Determining Orthogonality

Ex.

\[
\begin{pmatrix}
1 & 0 & 0 & -3 & -2 \\
0 & 1 & 0 & -2 & 4 \\
0 & 0 & 1 & 1 & -1 \\
\end{pmatrix}
\]

Suppose there exists \(w \) such that all entries in \(w \) are nonnegative.

Then \(w = c_1 v_1 + c_2 v_2 + c_3 v_3. \)

So \(c_3 \geq 3c_1 + 2c_2 \) and \(4c_2 \geq 2c_1 + c_3. \)
Constraint Analysis

We can have up to \(n \) inequalities, where \(n \) is the number of reactions.

\[
x_i \geq 0
\]

\[
a_{1,1}x_1 + \ldots + a_{1,k}x_k \leq b_1
\]

\[
a_{2,1}x_1 + \ldots + a_{2,k}x_k \leq b_2
\]

\[
\vdots
\]

\[
a_{n-k,1}x_1 + \ldots + a_{n-k,k}x_k \leq b_{n-k}
\]
Special Properties

- All boundary hyperplanes intersect at the origin.
- Origin is always feasible.
- Every nontrivial feasible region is unbounded.
Bounding the System in 2D

Take any line with positive x and y intercepts.
Bounding the System in 2D

Take any line with positive x and y intercepts.

- The intersection of this line and the feasible region is bounded and does not contain the origin.

- The intersection of this line and the feasible region is bounded and does not contain the origin.
Bounding the System in 2D

Take any line with positive x and y intercepts.

- The intersection of this line and the feasible region is bounded and does not contain the origin.
- The intersection is nonempty if and only if a feasible region exists.
Bounding the System in General

Suppose $x_1 + \ldots + x_k = 1$.
Bounding the System in General

Suppose $x_1 + \ldots + x_k = 1$.

Then $x_1 = 1 - x_2 - \ldots - x_k$.
Linear Programming

Finds an optimal solution to a linear function based on a set of linear constraints.
Linear Programming

Objective function maximize $Z = ?$

Constraints: $Ax \leq b, x \geq 0$

\[
\begin{align*}
a_{1,1}x_1 + \ldots + a_{1,k}x_k & \leq b_1 \\
a_{2,1}x_1 + \ldots + a_{2,k}x_k & \leq b_2 \\
& \vdots \\
a_{n-k+1,1}x_1 + \ldots + a_{n-k+1,k}x_k & \leq b_{n-k+1}
\end{align*}
\]
Linear Programming

Objective function: maximize $Z = -x_0$

Constraints: $A\hat{x} \leq b, \quad x \geq 0$

$-x_0 + a_{1,1}x_1 + \ldots + a_{1,k}x_k \leq b_1$

$-x_0 + a_{2,1}x_1 + \ldots + a_{2,k}x_k \leq b_2$

\vdots

$-x_0 + a_{n-k+1,1}x_1 + \ldots + a_{n-k+1,k}x_k \leq b_{n-k+1}$

Our original system of constraints has a feasible region if and only if $Z = -x_0$ maximizes to 0.
Polynomial Time?

Anstreicher's interior point method (1999) runs in polynomial time in the worst case: \(O(k^3 \log(k)n)\).

Interior point algorithms are at most \(O(\sqrt{k\log(k)})\) on average.
Anstreichers’s interior point method (1999) runs in polynomial time in the worst case: $O\left(\frac{k^3}{\log(k)}n\right)$.
Anstreicher’s interior point method (1999) runs in polynomial time in the worst case: $O\left(\frac{k^3}{\log(k)} n\right)$.

Interior point algorithms are at most $O(\sqrt{k \log(k)})$ on average.
Efficiently Testing Thermodynamic Compliance of Chemical Reaction Networks

Meredith McCormack-Mager, Carlos Munoz, Zev Woodstock

20 July 2015