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Introduction

o Definition. An (ambient in R") isotopy between X,Y C R" is a continuous
function H:[0,1] x R" — R" satisfying:
@ Hr :R" — R defined by Hr(x) = H(y, x) for all x € R", is a homeomorphism for
each T € [0,1].
Q H(0,X)=X for all x € R"
Q H(1,X)=Y
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o Definition. An (ambient in R") isotopy between X,Y C R" is a continuous
function H:[0,1] x R" — R" satisfying:
Q Hr :R" — R defined by Hr(x) = H(y, x) for all x € R", is a homeomorphism for
each T € [0,1].
Q@ H(0,X)=X for all x € R"
Q H(1L.X)=Y
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Polytopes

o Definition. A polytope (in R") is the convex hull of any finite subset of R".

°
e ©
Figure 2: Line

Figure 1: Point Segment Figure 3: Triangle Figure 4: Pyramid
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o Definition: We call {ay,...,ar} C R" a circuit iff rank of [al """ ! } is T-1.

1 11
01 2

o Newton polygons are formed when you take the convex hull of exponent vectors.

o Ex: [ ] has the Rank 2=3-1
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© Hilbert's 16th Problem
@ Hanarck's Curve Theorem
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Hanarck's Curve Theorem

Hilbert's 16th Problem

@ posed by David Hilbert in 1900
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Hanarck's Curve Theorem

Hilbert's 16th Problem

@ posed by David Hilbert in 1900
@ Harnack (1876) investigated algebraic curves in the real projective plane and
found that curves of degree n could have no more than
n?> —3n+4
2

connected components (pieces).
@ M-curves: curves with maximally many ovals
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Hanarck's Curve Theorem

Hilbert's 16th Problem

@ posed by David Hilbert in 1900
@ Harnack (1876) investigated algebraic curves in the real projective plane and

found that curves of degree n could have no more than

n’ —3n+4
2

connected components (pieces).
@ M-curves: curves with maximally many ovals
o Disposition of ovals tells you the isotopy type.
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Hanarck's Curve Theorem

Hilbert's 16th Problem

The disposition of ovals is still unknown at n=8.
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@ Viro's patchworking method helps classify curves and surfaces.

o Main ldea: decompose a real algebraic variety into parts called patches, which
are easier to analyze.
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An Example of a Viro Diagram
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An Example of a Viro Diagram

1+x2+y2+X2y2—x3y—xy3+x3y2+X2y3+x5+y5
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Trouble

You can have Viro diagrams of arbitrary higher dimensions.
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Trouble

You can have Viro diagrams of arbitrary higher dimensions. However, it is not clear on
how to efficiently count or extract the pieces.
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Trouble

You can have Viro diagrams of arbitrary higher dimensions. However, it is not clear on
how to efficiently count or extract the pieces.So we are going to do something
different...
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Outline of Algorithm for Computing Isotopy Types

1

Input: A= [ay, ..., apy2] € Z™(12) with A = [
ar o any2

] has rank n+1, and

Cly...,Cny2 eR.
Output: A quadratic polynomial g with Zg(q) isotopic to Z(f), where
f(x) = Y02 cix
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Outline of Algorithm for Computing Isotopy Types

1

] has rank n+1, and
ap -+ ang2

Input: A= [ay, ..., apy2] € Z™(12) with A = [

Cly...,Cny2 eR.
Output: A quadratic polynomial g with Zg(q) isotopic to Z(f), where
F(x) i= 72 i

Q If sign(c1) = -+ = sign(cn2) then output Z(f)=10 and stop.
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Outline of Algorithm for Computing Isotopy Types

Input: A:=[a1,...,an42] € Zm(1+2) with A = {1 1 ] has rank n+1, and

ar - an42
Cly...,Cny2 eR.
Output: A quadratic polynomial g with Zg(q) isotopic to Z(f), where
Fx) = Y7 e
Q If sign(c1) = -+ = sign(cn2) then output Z(f)=10 and stop.
Q Let b € Z("2)X1 be any generator for right nullspace of A. If Sign(c)# + Sign(b)
then Z,(f) is isotopic to a hyperplane.
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Outline of Algorithm for Computing Isotopy Types

Input: A:=[a1,...,an42] € Zm(1+2) with A = {1 1 ] has rank n+1, and

ar - an42
Cly...,Cny2 eR.
Output: A quadratic polynomial g with Zg(q) isotopic to Z(f), where
Fx) = Y7 e
Q If sign(c1) = -+ = sign(cn2) then output Z(f)=10 and stop.
Q Let b € Z("2)X1 be any generator for right nullspace of A. If Sign(c)# + Sign(b)
then Z,(f) is isotopic to a hyperplane.
© (Roughly) Compute the oriented matroid structure of A and compute sign of
A-discriminant to obtain gq.
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Examples: Easiest Case

o Step 1: Are all coefficient signs the same?

Faith Ellison Department of Mathematics, Texas A&M University

Computing Isotopy Types of Zero Sets of Circuit Poly



Algorithm for Computing Isotopies
[e]e] leleleleleleleloo]e}

Examples: Easiest Case

o Step 1: Are all coefficient signs the same?
o E.g., 14+x+y-+xy has an empty positive zero set
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Examples: Easiest Case

o Step 1: Are all coefficient signs the same?

o E.g., 14+x+y+xy has an empty positive zero set because a sum of positive numbers
is never 0!
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Next Easiest Case

o Step 2: Compatability of b and ¢?
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Next Easiest Case

o Step 2: Compatability of b and ¢?

o E.g., -14+x+y-+xy
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Next Easiest Case

o Step 2: Compatability of b and ¢?

o E.g., -14+x+y-+xy

. 1111 _11
A=10 1 0 1| b-vector= 1
0 011 1
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Next Easiest Case

o Step 2: Compatability of b and ¢?
o E.g., -14+x+y-+xy
11 _11
A=1(0 1 0 1| b-vector= 1
0011
1
o —+++isnot +——+or N
—++-
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Next Easiest Case

o Step 2: Compatability of b and ¢?

o E.g., -14+x+y-+xy

. 1111 _11
A=10 1 0 1| b-vector= 1
0011
1
o —+++isnot +——+or N

— 4+ +—, so Z.(f) is isotopic to
a hyperplane! (a line in R?).
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The Discriminate

Quadratic Discriminant. If a, b, c are real numbers, then f(x) := ¢ + bx + ax? has 0,
1, or 2 real roots, according to the
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The Discriminate

Quadratic Discriminant. If a, b, c are real numbers, then f(x) := ¢ + bx + ax? has 0,
1, or 2 real roots, according to the

discriminant A5, (f) = b? —4dacis <0, =0, or > 0.
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The Discriminate

Quadratic Discriminant. If a, b, ¢ are real numbers, then f(x) := ¢+ bx + ax? has 0,
1, or 2 real roots, according to the

discriminant A5, (f) = b? —4dacis <0, =0, or > 0.

Trinomial Discriminant. If a, b, ¢ are positive real numbers, then
f(x) := ¢ — bx3% + ax?% has 0, 1, or 2 positive roots, according to the
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The Discriminate

Quadratic Discriminant. If a, b, ¢ are real numbers, then f(x) := ¢+ bx + ax? has 0,
1, or 2 real roots, according to the

discriminant A5, (f) = b? —4dacis <0, =0, or > 0.

Trinomial Discriminant. If a, b, ¢ are positive real numbers, then
f(x) := ¢ — bx3% + ax?% has 0, 1, or 2 positive roots, according to the

A-discriminant. Ag 392006 1= 196719673939 p2006 _ (062000 ,1967 5339 js < 0, = 0, or
> 0.
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Hardest Case

@ Step 3: Oriented Matroids and Discriminants
o E.g., 2-x-y+xy
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Hardest Case

@ Step 3: Oriented Matroids and Discriminants
o E.g., 2-x-y+xy
o The simplex has 3 edges and the point (1,1), which lies on the positive (outside)
side of the edge. So for our example, we get the sequence + + +. This will
determine an index ¢ yielding q(x1,%)=xf + -+ + X7 — X7, — -+ — x3+3.
o So then ...

Faith Ellison Department of Mathematics, Texas A&M University

Computing Isotopy Types of Zero Sets of Circuit Polynomials



Algorithm for Computing Isotopies
0000080000000

Hardest Case

@ Step 3: Oriented Matroids and Discriminants

o E.g., 2-x-y+xy

o The simplex has 3 edges and the point (1,1), which lies on the positive (outside)
side of the edge. So for our example, we get the sequence + + +. This will
determine an index ¢ yielding q(x1,%)=xf + -+ + X7 — X7, — -+ — x3+3.

o So then ...

o b-vector is :i and discriminant is (2)}(=1)"1(=)"1(3)' -1>0
1
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Shapes from Matroid Structure

The position of the last support point « relative to the simplex determines what
shapes can you get...

® “
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Viro Diagrams

2-X-y+xy
(x-1)(y-1)+1
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Figure 5: A <0 Figure 6: A <0 Figure 7. A >0 Figure 8: A >0

Faith Ellison Department of Mathematics, Texas A&M U

Computing Isotopy Types of Zero Sets of Circuit Polyn



Algorithm for Computing Isotopies
0000000008000

Triangulations

X24+y?+1—cxy

Figure 9: ¢>2.749459275 Figure 10: ¢=2.749459275 Figure 11: ¢<2.749459275
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In Closing

What about higher dimensions?
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In Closing

What about higher dimensions?

In 1994, Gelfand, Kapranov, and Zelevinsky observed that for any circuit
{a1, -+ ,ant2}, provided
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In Closing

What about higher dimensions?

In 1994, Gelfand, Kapranov, and Zelevinsky observed that for any circuit

{a1, -+ ,ant2}, provided (sign(ci), - -,sign(cpt2)) matches + (sign(by),- - -,sign(bp+2)
then the isotopy type of Z,(f) is determined by the sign of

n—+2 c b;
EA::H = —1]..

. b;

=1

Faith Ellison Department of Mathematics, Texas A&M University

Computing Isotopy Types of Zero Sets of Circuit Polynomials



Algorithm for Computing Isotopies
0000000000080

In Closing

The Algorithm:
@ If sign(c1) = -+ = sign(cpy2) then output Z(f)=( and stop.
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In Closing

The Algorithm:
@ If sign(c1) = -+ = sign(cpy2) then output Z(f)=( and stop.

Q Let b € Z("2)*1 pe any generator for right nullspace of A. If Sign(c)# + Sign(b)
then Z,(f) is isotopic to a hyperplane.
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In Closing

The Algorithm:
@ If sign(c1) = -+ = sign(cpy2) then output Z(f)=( and stop.
Q Let b € Z("2)*1 pe any generator for right nullspace of A. If Sign(c)# + Sign(b)
then Z,(f) is isotopic to a hyperplane.
@ (Roughly) Compute the oriented matroid structure of A and compute sign of
A-discriminant to obtain q.
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