Counting and Finding Real Roots of Univariate Trinomials

Cydnee Evans

July 24, 2023

Introduction

Previously, we discussed how the roots of trinomials of arbitrary degree can be expressed as power series.

Introduction

Previously, we discussed how the roots of trinomials of arbitrary degree can be expressed as power series.
Given a trinomial of the form

$$
f(x)=1-c x^{m}+x^{n}
$$

Introduction

Previously, we discussed how the roots of trinomials of arbitrary degree can be expressed as power series.
Given a trinomial of the form

$$
f(x)=1-c x^{m}+x^{n}
$$

where $c \neq 0,0<m<n$, and $\operatorname{gcd}(m, n)=1$ and defining

$$
r_{m, n}:=\left|\frac{n}{m^{\frac{m}{n}}(n-m)^{\frac{(n-m)}{n}}}\right|
$$

there are various cases when we compare the coefficient c to $r_{m, n}$.

Case 1

When $c>r_{m, n}$, there are two positive roots.

Case 1

When $c>r_{m, n}$, there are two positive roots.

- The smaller root of f is given by

$$
x_{\text {low }}(c)=\frac{1}{c^{\frac{1}{m}}}\left[1+\sum_{k=1}^{\infty}\left(\frac{1}{k m^{k}} \cdot \prod_{j=1}^{k-1} \frac{1+k n-j m}{j}\right) \frac{1}{c^{\frac{k n}{m}}}\right]
$$

Case 1

When $c>r_{m, n}$, there are two positive roots.

- The smaller root of f is given by

$$
x_{\text {low }}(c)=\frac{1}{c^{\frac{1}{m}}}\left[1+\sum_{k=1}^{\infty}\left(\frac{1}{k m^{k}} \cdot \prod_{j=1}^{k-1} \frac{1+k n-j m}{j}\right) \frac{1}{c^{\frac{k n}{m}}}\right]
$$

- The larger root of f is given by

$$
x_{h i}(c)=c^{\frac{1}{(n-m)}}\left[1-\sum_{k=1}^{\infty}\left(\frac{1}{k(n-m)^{k}} \cdot \prod_{j=1}^{k-1} \frac{k m+j(n-m)-1}{j}\right) \frac{1}{c^{\frac{k n}{(n-m)}}}\right]
$$

Case 2

When $c<r_{\text {m.n }}, f$ has one positive root

Case 2

When $c<r_{\text {m.n }}, f$ has one positive root

- The following series converges near the root of f

$$
x_{\text {mid }}(c)=(-1)^{\frac{1}{n}}\left[1+\sum_{k=1}^{\infty}\left(\frac{1}{k m^{k}} \cdot \prod_{j=1}^{k-1} \frac{1+k m-j n}{j}\right)\left((-1)^{\frac{(m-n)}{n}} c\right)^{k}\right]
$$

Case 2

When $c<r_{\text {m.n }}, f$ has one positive root

- The following series converges near the root of f

$$
x_{\text {mid }}(c)=(-1)^{\frac{1}{n}}\left[1+\sum_{k=1}^{\infty}\left(\frac{1}{k m^{k}} \cdot \prod_{j=1}^{k-1} \frac{1+k m-j n}{j}\right)\left((-1)^{\frac{(m-n)}{n}} c\right)^{k}\right]
$$

However, how can you solve without knowing how many roots there are?

Root Counting

Let us consider

$$
f(x)=c_{1}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}}
$$

Root Counting

Let us consider

$$
f(x)=c_{1}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}}
$$

with

$$
\begin{aligned}
& c_{1}, c_{2}, c_{3} \neq 0 \\
& 0<a_{2}<a_{3} \\
& c_{3}>0
\end{aligned}
$$

Root Counting

Let us consider

$$
f(x)=c_{1}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}}
$$

with

$$
\begin{aligned}
& c_{1}, c_{2}, c_{3} \neq 0 \\
& 0<a_{2}<a_{3} \\
& c_{3}>0
\end{aligned}
$$

By examining the sign of the coefficients, we can determine the number of roots f will have
(1) $c_{1}, c_{2}>0 \Rightarrow 0$ roots
(2) $c_{1}, c_{2}<0 \Rightarrow 1$ root
(3) $c_{1}<0$ and $c_{2}>0 \Rightarrow 1$ root

Root Counting

When $c_{1}>0$ and $c_{2}<0, f$ can have 0,1 , or 2 roots.
By evaluating the modified A-discriminant:

$$
\equiv_{A}=\left(\frac{c_{1}}{a_{3}-a_{2}}\right)^{a_{3}-a_{2}}\left(\frac{c_{2}}{-a_{3}}\right)^{-a_{3}}\left(\frac{c_{3}}{a_{2}}\right)^{a_{2}}-1
$$

Root Counting

When $c_{1}>0$ and $c_{2}<0, f$ can have 0,1 , or 2 roots.
By evaluating the modified A-discriminant:

$$
\bar{A}_{A}=\left(\frac{c_{1}}{a_{3}-a_{2}}\right)^{a_{3}-a_{2}}\left(\frac{c_{2}}{-a_{3}}\right)^{-a_{3}}\left(\frac{c_{3}}{a_{2}}\right)^{a_{2}}-1
$$

if this value is:
(1) $>0 \Rightarrow 2$ roots
(2) $=0 \Rightarrow 1$ root
(3) $<0 \Rightarrow 0$ roots

Baker's Theorem

This evaluation becomes complex with large coefficients, which is why we take advantage of an application of Baker's Theorem.

Baker's Theorem

This evaluation becomes complex with large coefficients, which is why we take advantage of an application of Baker's Theorem.

Baker's Theorem (1966)

If $\alpha_{i} \in \mathbb{Q}_{+}, b_{i} \in \mathbb{Z}$ with $\log A_{i}:=\max \left\{h\left(\alpha_{i}\right),\left|\log \left(\alpha_{i}\right)\right|, 0.16\right\}$, $B:=\max \left\{\left|b_{i}\right|\right\}$, then

$$
\begin{gathered}
\sum_{i=i}^{m} b_{i} \log \left(\alpha_{i}\right) \neq 0 \Rightarrow \\
\log \left|\sum_{i=i}^{m} b_{i} \log \left(\alpha_{i}\right)\right|>-1.4 \cdot m^{4.5} 30^{m+3}(1+\log (B)) \prod_{i=1}^{m} \log \left(A_{i}\right)
\end{gathered}
$$

Approximating Logarithms

Lemma

Given any $x \in \mathbb{Q}_{+}$of height h, and $\ell \in \mathbb{N}$ with $\ell \geq h$ we can compute $\left\lfloor\log _{2} \max \{1, \log (x)\}\right\rfloor$ and the ℓ most significant bits of $\log (x)$ in time $O\left(\ell \log ^{2}(\ell)\right)$.

Example

$$
f(x)=c_{1}+c_{2} x^{2}+c_{3} x^{13}
$$

Example

$$
f(x)=c_{1}+c_{2} x^{2}+c_{3} x^{13}
$$

Evaluating the modified A-discriminant and taking log

$$
11 \log \left(\frac{c_{1}}{11}\right)-13 \log \left(\frac{c_{2}}{-13}\right)+2 \log \left(\frac{c_{3}}{2}\right)
$$

Example

$$
f(x)=c_{1}+c_{2} x^{2}+c_{3} x^{13}
$$

Evaluating the modified A-discriminant and taking log

$$
11 \log \left(\frac{c_{1}}{11}\right)-13 \log \left(\frac{c_{2}}{-13}\right)+2 \log \left(\frac{c_{3}}{2}\right)
$$

We can approximate using

$$
11 L_{1}-13 L_{2}+2 L_{3}
$$

where $L_{i} \approx \log \left(\alpha_{i}\right)$ up to error $<$
$\frac{1}{10}\left(-1.4 \cdot m^{4.5} 30^{m+3}(1+\log (B)) \prod_{i=1}^{m} \log \left(A_{i}\right)\right)$

Case 3

Consider the trinomial

$$
f(x)=1-1.5362173 x^{2}+x^{13}
$$

Case 3

Consider the trinomial

$$
f(x)=1-1.5362173 x^{2}+x^{13}
$$

- Here $c>r_{m, n}=1.5362171 \ldots$, so we should expect to use $x_{h i}(c)$ and $x_{\text {low }}(c)$ to find the roots.

Case 3

Consider the trinomial

$$
f(x)=1-1.5362173 x^{2}+x^{13}
$$

- Here $c>r_{m, n}=1.5362171 \ldots$, so we should expect to use $x_{h i}(c)$ and $x_{\text {low }}(c)$ to find the roots.
- However these series do not produce 2 correct decimal places of until at least 20,000 terms are used.

Case 3

Consider the trinomial

$$
f(x)=1-1.5362173 x^{2}+x^{13}
$$

- Here $c>r_{m, n}=1.5362171 \ldots$, so we should expect to use $x_{h i}(c)$ and $x_{\text {low }}(c)$ to find the roots.
- However these series do not produce 2 correct decimal places of until at least 20,000 terms are used.
So, we need a new series to solve this case.

Singular Series

When $|c| \approx r_{m, n}$ the following pair of series give the roots of f

Singular Series

When $|c| \approx r_{m, n}$ the following pair of series give the roots of f

$$
x_{\text {sing }}^{ \pm}=\zeta \sum_{k=0}^{\infty} \frac{\gamma_{k}}{(\pm \sqrt{(n-m) r})^{k}}(c-r)^{k / 2}
$$

where $\zeta=\left(\frac{m}{n-m}\right)^{1 / n}$ and $\gamma_{k} \in \mathbb{Q}[m, n]$

Singular Series

When $|c| \approx r_{m, n}$ the following pair of series give the roots of f

$$
x_{\text {sing }}^{ \pm}=\zeta \sum_{k=0}^{\infty} \frac{\gamma_{k}}{(\pm \sqrt{(n-m) r})^{k}}(c-r)^{k / 2}
$$

where $\zeta=\left(\frac{m}{n-m}\right)^{1 / n}$ and $\gamma_{k} \in \mathbb{Q}[m, n]$
We can find γ_{k} terms algorithmically, for example it can be shown that

$$
\gamma_{0}=\gamma_{1}=1, \gamma_{2}=\frac{2 m-n+3}{6}
$$

Singular Series

When $|c| \approx r_{m, n}$ the following pair of series give the roots of f

$$
x_{\text {sing }}^{ \pm}=\zeta \sum_{k=0}^{\infty} \frac{\gamma_{k}}{(\pm \sqrt{(n-m) r})^{k}}(c-r)^{k / 2}
$$

where $\zeta=\left(\frac{m}{n-m}\right)^{1 / n}$ and $\gamma_{k} \in \mathbb{Q}[m, n]$
We can find γ_{k} terms algorithmically, for example it can be shown that

$$
\gamma_{0}=\gamma_{1}=1, \gamma_{2}=\frac{2 m-n+3}{6}
$$

We know γ_{k} has degree $k-1$ in (m, n), but an explicit formula is not currently known.

Comparing Series

Terms needed for error $<1 / 1000$ for approximation of larger root of $f(x)=1-c x^{2}+x^{13}$ for varying values of c :

c	$x_{h i}$	$x_{\text {sing }}^{+}$
1.5362173	>20000	2
1.7	17	5
2.5	5	9

Thank you!

