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Introduction

Previously, we discussed how the roots of trinomials of arbitrary
degree can be expressed as power series.

Given a trinomial of the form

f(x) = 1 − cxm + xn

where c ̸= 0, 0 < m < n, and gcd(m, n) = 1 and defining

rm,n :=

∣∣∣∣∣ n
m m

n (n − m)
(n−m)

n

∣∣∣∣∣
there are various cases when we compare the coefficient c to rm,n.
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Case 1

When c > rm,n, there are two positive roots.

The smaller root of f is given by

xlow(c) =
1

c 1
m

[
1 +

∞∑
k=1

(
1

kmk ·
k−1∏
j=1

1 + kn − jm
j

)
1

c kn
m

]

The larger root of f is given by

xhi(c) = c
1

(n−m)

[
1−

∞∑
k=1

(
1

k(n − m)k ·
k−1∏
j=1

km + j(n − m)− 1
j

)
1

c
kn

(n−m)

]
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Case 2

When c < rm.n, f has one positive root

The following series converges near the root of f

xmid(c) = (−1) 1
n

[
1+

∞∑
k=1

(
1

kmk ·
k−1∏
j=1

1 + km − jn
j

)
((−1)

(m−n)
n c)k

]

However, how can you solve without knowing how many roots
there are?
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Root Counting

Let us consider
f(x) = c1 + c2xa2 + c3xa3

with
c1, c2, c3 ̸= 0
0 < a2 < a3

c3 > 0
By examining the sign of the coefficients, we can determine the
number of roots f will have

1 c1, c2 > 0 ⇒ 0 roots
2 c1, c2 < 0 ⇒ 1 root
3 c1 < 0 and c2 > 0 ⇒ 1 root
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Root Counting

When c1 > 0 and c2 < 0, f can have 0, 1, or 2 roots.
By evaluating the modified A-discriminant:

ΞA =
( c1

a3 − a2

)a3−a2( c2
−a3

)−a3(c3
a2

)a2
− 1

if this value is:
1 > 0 ⇒ 2 roots
2 = 0 ⇒ 1 root
3 < 0 ⇒ 0 roots
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Baker’s Theorem

This evaluation becomes complex with large coefficients, which is
why we take advantage of an application of Baker’s Theorem.

Baker’s Theorem (1966)
If αi ∈ Q+, bi ∈ Z with logAi := max{h(αi), |log(αi)|, 0.16},
B := max{|bi|}, then

m∑
i=i

bilog(αi) ̸= 0 ⇒

log|
m∑
i=i

bilog(αi)| > −1.4 · m4.530m+3(1 + log(B))
m∏

i=1
log(Ai)
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Approximating Logarithms

Lemma
Given any x ∈ Q+ of height h, and ℓ ∈ N with ℓ ≥ h we can
compute ⌊log2max{1, log(x)}⌋ and the ℓ most significant bits of
log(x) in time O(ℓlog2(ℓ)).
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Example

f(x) = c1 + c2x2 + c3x13

Evaluating the modified A-discriminant and taking log

11log
(

c1
11

)
− 13log

(
c2
−13

)
+ 2log

(
c3
2

)

We can approximate using

11L1 − 13L2 + 2L3

where Li ≈ log(αi) up to error <
1
10(−1.4 · m4.530m+3(1 + log(B))

∏m
i=1 log(Ai))
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Case 3

Consider the trinomial

f(x) = 1 − 1.5362173x2 + x13

Here c > rm,n = 1.5362171..., so we should expect to use
xhi(c) and xlow(c) to find the roots.
However these series do not produce 2 correct decimal places
of until at least 20,000 terms are used.

So, we need a new series to solve this case.
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Singular Series

When |c| ≈ rm,n the following pair of series give the roots of f

x±sing = ζ
∞∑

k=0

γk
(±
√

(n − m)r)k (c − r)k/2

where ζ =
(

m
n−m

)1/n
and γk ∈ Q[m, n]

We can find γk terms algorithmically, for example it can be shown
that

γ0 = γ1 = 1, γ2 =
2m − n + 3

6

We know γk has degree k − 1 in (m, n), but an explicit formula is
not currently known.
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Comparing Series

0 1 2 3

1.536...
1.7

2.5

Terms needed for error < 1/1000 for approximation of larger root
of f(x) = 1 − cx2 + x13 for varying values of c:

c xhi x+sing
1.5362173 >20000 2
1.7 17 5
2.5 5 9
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Thank you!
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