Developing a New Tool for Modeling the Topology of Zero Sets of Bivariate Pentanomials

Vaishali Miriyagalla

TAMU

July 24, 2023

Overview

- Terminology and Background
- Motivation and Goals
- Matlab Program
- Results

Near Circuit Polynomials

Support

Def: Given a polynomial f, the support is its set of exponent vectors

$$
\text { E.g. } f(x, y)=1-x-y+x^{4} y+x y^{4} \text {, support } \mathcal{A}=\left[\begin{array}{lllll}
0 & 1 & 0 & 4 & 1 \\
0 & 0 & 1 & 1 & 4
\end{array}\right]
$$

Near Circuit Polynomials

Support

Def: Given a polynomial f, the support is its set of exponent vectors

$$
\text { E.g. } f(x, y)=1-x-y+x^{4} y+x y^{4} \text {, support } \mathcal{A}=\left[\begin{array}{lllll}
0 & 1 & 0 & 4 & 1 \\
0 & 0 & 1 & 1 & 4
\end{array}\right]
$$

Near Circuit Polynomials

Def: A polynomial whose support $\mathcal{A}=\left[a_{1}, \ldots, a_{n+3}\right] \in \mathbb{Z}^{n \times(n+3)}$ yields $\left[\begin{array}{ccc}1 & \cdots & 1 \\ a_{1} & \cdots & a_{n+3}\end{array}\right]$ having rank $n+1$.
E.g. a bivariate pentanomial has 2 variables and 5 terms.

$$
n=\text { the number of variables }
$$

Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero

Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero Topology of Zero sets:

- Univariate $(n=1)$: number of zeros or roots
- Bivariate ($n=2$): number of pieces (connected components)

Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero Topology of Zero sets:

- Univariate $(n=1)$: number of zeros or roots
- Bivariate $(n=2)$: number of pieces (connected components)
\mathcal{A}-discriminant polynomial: polynomial in coefficients of f vanishing when f has a singular zero set
- For near circuits, can simplify to a bivariate polynomial: reduced

Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero Topology of Zero sets:

- Univariate $(n=1)$: number of zeros or roots
- Bivariate $(n=2)$: number of pieces (connected components)
\mathcal{A}-discriminant polynomial: polynomial in coefficients of f vanishing when f has a singular zero set
- For near circuits, can simplify to a bivariate polynomial: reduced
- Recall quadratics from Algebra 1 :

$$
\text { if } f(x)=a x^{2}+b x+c \text {, then the discriminant }=b^{2}-4 a c
$$

Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero Topology of Zero sets:

- Univariate $(n=1)$: number of zeros or roots
- Bivariate $(n=2)$: number of pieces (connected components)
\mathcal{A}-discriminant polynomial: polynomial in coefficients of f vanishing when f has a singular zero set
- For near circuits, can simplify to a bivariate polynomial: reduced
- Recall quadratics from Algebra 1 :

$$
\text { if } f(x)=a x^{2}+b x+c \text {, then the discriminant }=b^{2}-4 a c
$$

Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero Topology of Zero sets:

- Univariate $(n=1)$: number of zeros or roots
- Bivariate $(n=2)$: number of pieces (connected components)
\mathcal{A}-discriminant polynomial: polynomial in coefficients of f vanishing when f has a singular zero set
- For near circuits, can simplify to a bivariate polynomial: reduced
- Recall quadratics from Algebra 1:

$$
\text { if } f(x)=a x^{2}+b x+c, \text { then the discriminant }=b^{2}-4 a c
$$

\mathcal{A}-discriminant variety: where \mathcal{A}-discriminant $=0$
i.e. critical points/curves where the topology of the zero set changes

Reduced ${ }^{1} \mathcal{A}$-discriminant variety for $\mathcal{A}=$

$363087263602825104457728 a^{32} b^{8}-2904698108822600835661824 a^{29} b^{11}+$
$10166443380879102924816384 a^{26} b^{14}-20332886761758205849632768 a^{23} b^{17}+$
$25416108452197757312040960 a^{20} b^{20}-20332886761758205849632768 a^{17} b^{23}+$
$10166443380879102924816384 a^{14} b^{26}-2904698108822600835661824 a^{11} b^{29}+$
$363087263602825104457728 a^{8} b^{32}-726174527205650208915456 a^{31} b^{4}+5798049740657613386809344 a^{28} b^{7}+$ $31282237054780900405936128 a^{25} b^{10}-50571247933680984080252928 a^{22} b^{13}$
$191290255533750888626651136 a^{19} b^{16}+482236618449489680142434304 a^{16} b^{19}-$
$363189381895713399018356736 a^{13} b^{22}+74489621423517087836405760 a^{10} b^{25}+$
$12696707749111290371506176 a^{7} b^{28}-726174527205650208915456 a^{4} b^{31}+363087263602825104457728 a^{30}-$
$2893351631835012551147520 a^{27} b^{3}-92973237722754317832683520 a^{24} b^{6}+$
$134703665565747736152637440 a^{21} b^{9}+2535119422553880950892134400 a^{18} b^{12}+$
$6930726608820725492905672704 a^{15} b^{15}+10397247952186084766590697472 a^{12} b^{18}+$
$1368264254117216589547831296 a^{9} b^{21}+178810349707236426746167296 a^{6} b^{24}$
$9792009640288689535844352 a^{3} b^{27}+363087263602825104457728 b^{30}+$
$51524645931445780035403776 a^{23} b^{2}-38288951865122947982163968 a^{20} b^{5}-$
$4594348961140867552012926976 a^{17} b^{8}-18138163316374406659527671808 a^{14} b^{11}-$
$21319282121430982186963566592 a^{11} b^{14}+2514558123743644571580497920 a^{8} b^{17}-$
$269737322421295126029533184 a^{5} b^{20}-20941053496075364622925824 a^{2} b^{23}$
$25511283567328457194995712 a^{19} b+2225676679631729339955937280 a^{16} b^{4}+$
$13591000063033685271054909440 a^{13} b^{7}+14323107664774924348979937280 a^{10} b^{10}-$
$11483443502644561069909999616 a^{7} b^{13}+384254443547034707078152192 a^{4} b^{16}+$ $33392996500536631555522560 a b^{19}-557969223231079901560832 a^{15}-$ $284549969837299986609843712 a^{12} b^{3}-4692084142913135619868721152 a^{9} b^{6}+$ $8896118143687124537286066176 a^{6} b^{9}-828434941582623838008508416 a^{3} b^{12}-$ $557969223231079901560832 b^{15}+1644546811048059090366627840 a^{8} b^{2}-$ $971141005960243113814917120 a^{5} b^{5}+491069384583950065193975808 a^{2} b^{8}-$ $394594247668399678957787136 a^{4} b-8568922617577790827960320 a b^{4}+41987654504771523593992227$

${ }^{1}$ Reduced coefficient vector is $c:=[1,1,1, a, b]$

Modeling the \mathcal{A}-discriminant Variety

Parametrize the \mathcal{A}-discriminant variety: Horn-Kapranov Uniformization

Modeling the \mathcal{A}-discriminant Variety

Parametrize the \mathcal{A}-discriminant variety: Horn-Kapranov Uniformization
E.g. $f(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$
(1) add a row of ones above \mathcal{A} to make $\hat{\mathcal{A}}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$

Modeling the \mathcal{A}-discriminant Variety

Parametrize the \mathcal{A}-discriminant variety: Horn-Kapranov Uniformization
E.g. $f(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$
(1) add a row of ones above \mathcal{A} to make $\hat{\mathcal{A}}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
(2) let \mathcal{B} be a 2×5 matrix whose columns form a basis for the right nullspace of $\hat{\mathcal{A}}$

Modeling the \mathcal{A}-discriminant Variety

Parametrize the \mathcal{A}-discriminant variety: Horn-Kapranov Uniformization
E.g. $f(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$
(1) add a row of ones above \mathcal{A} to make $\hat{\mathcal{A}}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
(2) let \mathcal{B} be a 2×5 matrix whose columns form a basis for the right nullspace of $\hat{\mathcal{A}}$
(3) let λ be the variable of parametrization
(9) $\log \left|\lambda \cdot \mathcal{B}^{\top}\right| \cdot \mathcal{B}$ parametrizes the \mathcal{A}-discriminant variety
E.g. $f(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$

Parametrized \mathcal{A}-discriminant Variety

E.g. $f(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$

Parametrized \mathcal{A}-discriminant Variety

Signed Contour: +--++

Zero sets of $f(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$

Signed Contour: +--++

Zero sets of $f(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$

coefficients:

Signed Contour: +--++

$\left[1,-\frac{3}{4},-\frac{3}{4}, 1,1\right]$
$[1,-1,-1,1,1]$
$\left[\frac{1}{2},-1,-1, \frac{1}{2}, \frac{1}{2}\right]$

Motivation and Goals

- Explicitly drawing those zero sets is NP hard.

Motivation and Goals

- Explicitly drawing those zero sets is NP hard.
- We want to approximate the isotopy type (rough shape and number) of pieces of a zero set.

Motivation and Goals

- Explicitly drawing those zero sets is NP hard.
- We want to approximate the isotopy type (rough shape and number) of pieces of a zero set.
- Matlab Program:
(1) Draw parametrized \mathcal{A}-discriminant variety and signed contours

Motivation and Goals

- Explicitly drawing those zero sets is NP hard.
- We want to approximate the isotopy type (rough shape and number) of pieces of a zero set.
- Matlab Program:
(1) Draw parametrized \mathcal{A}-discriminant variety and signed contours
(2) Find which signed contours may have inner chambers

Motivation and Goals

- Explicitly drawing those zero sets is NP hard.
- We want to approximate the isotopy type (rough shape and number) of pieces of a zero set.
- Matlab Program:
(1) Draw parametrized \mathcal{A}-discriminant variety and signed contours
(2) Find which signed contours may have inner chambers
(3) Determine isotopy type for outer chambers using Triangulations and Viro's Patchworking

Motivation and Goals

- Explicitly drawing those zero sets is NP hard.
- We want to approximate the isotopy type (rough shape and number) of pieces of a zero set.
- Matlab Program:
(1) Draw parametrized \mathcal{A}-discriminant variety and signed contours
(2) Find which signed contours may have inner chambers
(3) Determine isotopy type for outer chambers using Triangulations and Viro's Patchworking
- Continue developing approximations to determine which chamber a given coefficient vector lies in.

Program: Detecting Cusps and Inner Chambers

Rusekshih 2017
 For near-circuits, there are at most n cusps within one signed contour.

Program: Detecting Cusps and Inner Chambers

Rusekshih 2017

For near-circuits, there are at most n cusps within one signed contour.

- For $n=2 \rightarrow$ at most 2 cusps within one signed contour.
- If one signed contour has two cusps, we may have an inner chamber.

Program: Detecting Cusps and Inner Chambers

Rusekshih 2017

For near-circuits, there are at most n cusps within one signed contour.

- For $n=2 \rightarrow$ at most 2 cusps within one signed contour.
- If one signed contour has two cusps, we may have an inner chamber.
- To eliminate the possibility of having an inner chamber, detect signed contours with two cusps (cusp: $\frac{d x}{d t}=0$ and $\frac{d y}{d t}=0$).

Background on Triangulations and Viro's Patchworking

Simple e.g. $f(x)=c_{1} x+c_{2} y-c_{3} x y: \mathcal{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$

Background on Triangulations and Viro's Patchworking

Simple e.g. $f(x)=c_{1} x+c_{2} y-c_{3} x y: \mathcal{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
(1) Plot exponent vectors as points and draw convex polytope
(2) Label signs at each vertex
(3) Draw outer normals from edges with vertices of opposite signs and connect them

Background on Triangulations and Viro's Patchworking

Simple e.g. $f(x)=c_{1} x+c_{2} y-c_{3} x y$: signs $=++-$
(1) Plot exponent vectors as points and draw convex polytope
(2) Label signs at each vertex
(3) Draw outer normals from edges with vertices of opposite signs and connect them

Background on Triangulations and Viro's Patchworking

Simple e.g. $f(x)=c_{1} x+c_{2} y-c_{3} x y$
(1) Plot exponent vectors as points and draw convex polytope
(2) Label signs at each vertex
(3) Draw outer normals from edges
 with vertices of opposite signs and connect them

Background on Triangulations and Viro's Patchworking

Simple e.g. $f(x)=c_{1} x+c_{2} y-c_{3} x y$
(1) Plot exponent vectors as points and draw convex polytope
(2) Label signs at each vertex
(3) Draw outer normals from edges
 with vertices of opposite signs and connect them

Program: Isotopy Type (part 1: Triangulations)

$$
\text { Recall e.g. } \mathcal{A}=\left[\begin{array}{lllll}
0 & 1 & 0 & 4 & 1 \\
0 & 0 & 1 & 1 & 4
\end{array}\right]
$$

Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $\mathcal{A}=\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
Plot columns as coordinates
Draw convex polytope

Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $\mathcal{A}=\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
Plot columns as coordinates
Draw convex polytope

Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $\mathcal{A}=\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $\mathcal{A}=\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

- Add $-\log |c|$ as third row to support \mathcal{A}, where $c=\left[c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right]$

Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $\mathcal{A}=\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

- Add $-\log |c|$ as third row to support \mathcal{A}, where $c=\left[c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right]$
- Compute convex hull of lifted support

Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $\mathcal{A}=\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

- Add $-\log |c|$ as third row to support \mathcal{A}, where $c=\left[c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right]$
- Compute convex hull of lifted support
- Determine which triangle faces have positive inner normals

Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $\mathcal{A}=\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$
Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

- Add $-\log |c|$ as third row to support \mathcal{A}, where $c=\left[c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right]$
- Compute convex hull of lifted support
- Determine which triangle faces have positive inner normals
- These triangles form triangulation

Lifted Triangulation Example

Triangulations of $f(x)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{4} y+c_{5} x y^{4}$

Program: Isotopy Type (part 2: Viro Patchworking)

Label signs of vertices, note edges with vertices of opposite signs

- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles

Program: Isotopy Type (part 2: Viro Patchworking)

Label signs of vertices, note edges with vertices of opposite signs

- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles

Program: Isotopy Type (part 2: Viro Patchworking)

Label signs of vertices, note edges with vertices of opposite signs

- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles

Recall Actual Zero Sets

Program: Isotopy Type (part 2: Viro Patchworking)

Label signs of vertices, note edges with vertices of opposite signs

- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles

Recall Actual Zero Sets

Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.

Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.
- Ellen Chlachidze (2022) developed a more efficient approximation involving a simpler inequality
- curve based on the directions of the signed contour as it extends to infinity (let these infinite directions be called rays)

Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.
- Ellen Chlachidze (2022) developed a more efficient approximation involving a simpler inequality
- curve based on the directions of the signed contour as it extends to infinity (let these infinite directions be called rays)
- Problem: This approximation fails if the signed contour has a cusp.

Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.
- Ellen Chlachidze (2022) developed a more efficient approximation involving a simpler inequality
- curve based on the directions of the signed contour as it extends to infinity (let these infinite directions be called rays)
- Problem: This approximation fails if the signed contour has a cusp.

$\left[\begin{array}{lllll}0 & 1 & 2 & 1 & 4 \\ 0 & 2 & 1 & 4 & 1\end{array}\right]$

Ideas for Approximating Signed Contours with 1 Cusp

Ideas for Approximating Signed Contours with 1 Cusp

(1) Use two of Ellen's approximations: ray 1 to cusp, cusp to ray 2

Ideas for Approximating Signed Contours with 1 Cusp

(1) Use two of Ellen's approximations: ray 1 to cusp, cusp to ray 2
(2) Map a simpler \mathcal{A}-discriminant that contains a cusp onto our cusp:

Ideas for Approximating Signed Contours with 1 Cusp

(1) Use two of Ellen's approximations: ray 1 to cusp, cusp to ray 2
(2) Map a simpler \mathcal{A}-discriminant that contains a cusp onto our cusp:

- \mathcal{A}-discriminant of cubic (Support $=[0,1,2,3]$) has a cusp
- Solving for sidedness of the cubic A-discriminant (not parametrization) is better

Results: Approximating Signed Contours with Cusps

Ellen's Approximations

Results: Approximating Signed Contours with Cusps

Ellen's Approximations
Two of Ellen's
Approximations

Results: Approximating Signed Contours with Cusps

Ellen's Approximations
Two of Ellen's
Approximations
Mapping Cubic Cusp

Thank you!

