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Abstract

Given a univariate trinomial of arbitrary degree, A-Hypergeometric can be used to
find its approximate roots. Three families of series are explicitly known, however in
certain cases these series must use large numbers of terms to obtain an undesirably low
number of digits of accuracy. A new pair series has been constructed to account for
these cases. This report uses Maple 2023 to compare the effectiveness of these series
at approximating roots to a certain number of digits in varying instances.

1 Introduction

Quickly finding the roots of polynomials is of great interest and importance in many applica-
tions. For univariate polynomials of arbitrary degree, this problem is trivial for the binomial
case but becomes more complex for trinomials. Up to degree 4, explicit radical formulas are
known which can find these roots based on coefficients, but such formulas do not exist for
degree 5 or higher.

Three families of Puiseux series, discussed in Section 2, as a function of the middle
coefficient of a given trinomial are explicitly known that converge near the roots of trinomials
of arbitrary degree. The approximations of these roots obtained by these series can then be
applied in Newton iterations to obtain more precise estimations of the roots. However, these
series require many more terms to obtain a reasonable number of accurate decimal places
when this coefficient is within a certain range, leading to the development of a new pair of
series, for which an explicit form is not currently known.

This report uses the term ”effective” to describe an instance where a given series can
approximate a root to a specified number decimal places with a reasonably few number of
terms. This report compares the effectiveness of two of these series at varying values of the
middle coefficient.
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2 Background

Trinomials and Deterministic Complexity Limits for Real Solving [1] details how for a trino-
mial of arbitrary degree, its roots can be expressed as an explicit Puiseux series. A summary
of these findings is explained in this section. Considering an equation of the form:

fc(x) = 1− cxm + xn

where m,n ∈ N, 0 < m < n, gcd(m,n) = 1, and c ̸= 0 there are three cases and families of
series corresponding to each case that give the positive roots of fc. We define the singularity

as rm,n :=
∣∣∣ n
mm/n(n−m)(n−m)/n

∣∣∣. The series used to find the positive roots of fc is dependent

on the value of middle coefficient c when compared to rm,n.

2.1 Case 1: |c| < rm,n

When |c| < rm,n, the following series xmid(c) gives the positive root of fc:

xmid(c) = (−1)1/n

[
1 +

∞∑
k=1

(
1

kmk
·
k−1∏
j=1

1 + km− jn

j

)
((−1)(m+n)/nc)k

]

2.2 Case 2: |c| > rm,n

When |c| > rm,n, the function fc has two positive roots. The smaller root is given by the
following series xlo(c):

xlow(c) =
1

c1/m

[
1 +

∞∑
k=1

(
1

kmk
·
k−1∏
j=1

1 + kn− jm

j

)
1

ckn/m

]

The larger root of fc is given by the following series xhi(c):

xhi(c) = c1/(n−m)

[
1−

∞∑
k=1

(
1

k(n−m)k
·
k−1∏
j=1

km+ j(n−m)− 1

j

)
1

ckn/(n−m)

]

2.3 Case 3: |c| ≈ rm,n

When |c| approaches the singularity, the previously stated families of series become much
less effective. As such a new series has been found that absolves this issue. The pair of series
is given by:

x±
sing(c) = ζm,n

∞∑
k=0

γk

(±
√
(n−m)r)k

(c− rm,n)
k/2

where ζm,n =
(

m
n−m

)1/n
is the unique degenerate positive root of fc for c > 0 and γk are

rational numbers in Q[m,n].
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The γk coefficients are obtainable numerically, and several have been derived symbolically
in terms ofm and n. For instance, by examining the power series expansion of fw2+rm,n

(ζm,n+

α±
1 w + α±

2 w
2 + ...) by letting α±

k =
(
±
√

2
m(n−m)r

)k
ζγk and solving for the coefficients of w2

and w3 one can find that γ0 = γ1 = 1 and γ2 =
2m−n+3

3
. This approach is slow and does not

provide an explicit formula for all coefficients akin to the existing ones for the coefficients
for xmid(c), xhi(c), and xlow(c).

3 Results

Example. Given the trinomial

f(x) = 1− cx2 + x13

when c = 1.5362173 which is close to the singularity r2,13 ≈ 1.5362171, the series xhi(c) and
xlo(c) which we should expect to use in this case take more than 20,000 terms to give 3
decimal places of accuracy for a root of f . However, the new pair of series x±

sing(c) yields
3 digits of accuracy with just 1 term, 7 digits with 2 terms, and so on, despite a complete
explicit form not being known yet.

This section details experiments done via Maple 2023 to determine how many terms from
two series are needed to obtain a certain level of accuracy for approximating the roots of f .
The following tables list the minimum number of terms needed from the series xhi and x+

sing

to get 3 decimal places of accuracy for the larger positive root of f(x) = 1 − cxm + x13 for
m = 2...6 at different values of c with increasing distance from the singularity point rm,13.

Although higher bounds can be found for certain cases using further experimentation,
if more than 10,000 terms are required to get 3 decimal places of accuracy for a particular
instance, the precise bound is not given in this report and is simply listed as >10,000 terms.

The below table shows the results of the experiment for the m = 2 case. Here, rounded
to 7 decimal places, rm,n = 1.5462171.
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f(x) = 1− cx2 + x13

c xhi x+
sing

1.5362173 >10000 2
1.536218 >10000 2
1.53622 >10000 2
1.5363 3202 2
1.537 845 2
1.54 283 2
1.6 49 3
1.7 17 5
1.8 14 5
1.9 22 6
2.0 8 5
2.1 8 6
2.2 8 6
2.3 8 6
2.4 6 9
2.5 5 9

The below table shows the results of the experiment for the m = 3 case. Here, rounded
to 7 decimal places, rm,n = 1.7163572.

f(x) = 1− cx3 + x13

c xhi x+
sing

1.7163574 >10000 2
1.716358 >10000 2
1.71636 >10000 2
1.7164 >10000 2
1.717 900 2
1.72 319 2
1.8 29 3
1.9 24 4
2.0 9 5
2.1 7 5
2.2 6 5
2.3 9 6
2.4 6 6
2.5 5 6
2.6 7 7
2.7 6 7

The below table shows the results of the experiment for the m = 4 case. Here, rounded
to 7 decimal places, rm,n = 1.8538077.
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f(x) = 1− cx4 + x13

c xhi x+
sing

1.8538079 >10000 2
1.853808 >10000 2
1.85381 >10000 2
1.8539 2409 2
1.854 4687 2
1.86 194 2
1.9 114 4
2.0 15 3
2.1 11 3
2.2 12 4
2.3 7 5
2.4 7 5
2.5 7 5
2.6 7 5
2.7 5 5
2.8 5 5

The below table shows the results of the experiment for the m = 5 case. Here, rounded
to 7 decimal places, rm,n = 1.9469780.

f(x) = 1− cx5 + x13

c xhi x+
sing

1.9469782 >10000 2
1.946979 >10000 2
1.94698 >10000 2
1.947 4716 2
1.948 747 2
1.95 1256 2
2.0 30 2
2.1 17 2
2.2 10 4
2.3 7 6
2.4 8 5
2.5 11 5
2.6 5 5
2.7 6 4
2.8 5 5
2.9 3 6

The below table shows the results of the experiment for the m = 6 case. Here, rounded
to 7 decimal places, rm,n = 1.9940857.

5



f(x) = 1− cx6 + x13

c xhi x+
sing

1.9940859 >10000 2
1.994086 >10000 2
1.99409 >10000 2
1.9941 >10000 2
1.995 1382 2
2.0 138 3
2.1 20 3
2.2 12 3
2.3 7 4
2.4 6 4
2.5 6 4
2.6 8 4
2.7 4 4
2.8 4 4
2.9 4 4
3.0 3 6

4 Discussion

There are general trends in the data obtained that align with what we would expect based
on what is already known about how these series tend to work. Across all cases, xhi tends
to be very ineffective close to the singularity point rm,n, often requiring more than 10,000
terms to achieve the stated level of accuracy, but gradually gets more effective once c moves
farther away from that point. Conversely, x+

sing works very well when c is close to rm,n but
slowly becomes less effective as c grows larger away from the singularity.

There are many instances where the series do not behave this way. For example, in the
m = 2 case, when c = 1.8 the series xhi requires a minimum of 14 terms to obtain 3 decimal
places of accuracy for the root, but c = 1.9 now requires 22 terms. Exceptions to the general
trend also occur with x+

sing, such as when in the m = 2 case c increases from 1.9 to 2.0,
the series goes from needing a minimum of 6 terms to only needing 5 terms for this level of
accuracy. Similar observations can be seen in cases for other values of m.

There are a few extreme instances where the number of terms needed for the selected level
of accuracy changes very unpredictably. In particular, in the m = 4 case when c = 1.85381
the series xhi needs a minimum of at least 10,000 terms to approximate the larger root of f
to 3 decimal places. When increasing c to 1.8539 this series now only needs 2409 terms, but
increasing again to 1.854 it now needs a minimum of 4687 terms. A similar instance occurs
in the m = 5 case. This issue may be a result of only requiring 3 decimal places of accuracy,
but further experimentation would be needed to verify this.

Future research on this subject might include similar experiments with more precise
increments of m, experiments requiring more decimal places of accuracy, or experiments
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with trinomials of different values of m and n. Once obtaining more data, future research
might also produce precise intervals on which individual series are most effective for a given
trinomial.
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