Relative monotonicity of secular determinants of quantum graphs

Present by Yaqi Dai
Supervisor : Professor Berkolaiko

Motivation

- Quantum graph provides useful models for complex systems in the fields of natural science, engineering and social sciences
- In the long term, our project is to find a more efficient algorithm of computing eigenvalues of quantum graphs
- we conjectured that the secular determinants of quantum graphs are relatively monotonic

Background

DEFINITION: Quantum graph $\Gamma(V, E)$, where V is the set of vertices and E is the set of edges, is a metric graph equipped with a Hamiltonian operator H (1) , accompanied by "appropriate" vertex conditions (2).

- eigenvalue equation for the Schrödinger operator:

$$
\text { (1) } \quad-\frac{d^{2} f}{d x^{2}}+V(x) \cdot f(x)=k^{2} \cdot f(x)
$$

- (2) Vertex conditions:
- Neumann condition:
$f(x)$ is continuous on Γ and at each vertex v one has $\sum_{e \in E_{v}} \frac{d f}{d x_{e}}(v)=0$
- Dirichlet condition:
$f(x)$ is continuous on Γ and $f(v)=0$

A trivial example: interval

(1)

$$
V(x) \equiv 0
$$

Solution for $-f^{\prime \prime}=k^{2} f$ on L :
(2)

$$
f(x)=C_{1} \cos (k x)+C_{2} \sin (k x)
$$

Apply vertex conditions:

$$
\begin{equation*}
f^{\prime}(0)=0 \tag{3}
\end{equation*}
$$

Figure 1. interval [0,L],
Neumann condition on endpoints
A, B, and 0 corresponding A ;
(4)

$$
-f^{\prime}(L)=0
$$

we can solve eigenvalues:

$$
\begin{equation*}
k^{2}=\left(\frac{\pi n}{L}\right)^{2} \quad, n \in N \tag{5}
\end{equation*}
$$

Example: Lasso graph

Solution for $-f^{\prime \prime}=k^{2} f$ on L_{1}, L_{2} :

Figure 2. $\Gamma(\mathrm{V}, \mathrm{E})$ Lasso graph $\mathrm{V}=\{\mathrm{A}, \mathrm{B}\}$; $\mathrm{E}=\left\{\left[0, L_{1}\right],\left[0, L_{2}\right]\right\}$ where 0 corresponding connected point ;
Neumann condifion on vertices
(6) $f_{1}=a_{1} \cdot e^{i k x}+a_{\overline{1}} \cdot e^{i k\left(L_{1}-x\right)}$
(7) $f_{2}=a_{2} \cdot e^{i k x}+a_{\overline{2}} \cdot e^{i k\left(L_{2}-x\right)}$

Apply vertex condition:
(8) $-f_{1}^{\prime}\left(L_{1}\right)=-i k a_{1} e^{i k L_{1}}+i k a_{\overline{1}}=0$
(9) $f_{1}^{\prime}(0)+f_{2}^{\prime}(0)-f_{2}^{\prime}\left(L_{2}\right)=0$
(10) $\quad f_{1}(0)=f_{2}(0)=f_{2}\left(L_{2}\right)$

Example: Lasso graph

We get the system
(11) $a_{1}=-\frac{1}{3} a_{1} e^{i k L_{1}}+\frac{2}{3} a_{2} e^{i k L_{2}}+\frac{2}{3} a_{2} e^{i k L_{2}}$
(12) $a_{\overline{1}}=a_{1} e^{i k L_{1}}$
(13) $a_{2}=$

$$
\frac{2}{3} a_{\overline{1}} e^{i k L_{1}}+\frac{2}{3} a_{2} e^{i k L_{2}}-\frac{1}{3} a_{\overline{2}} e^{i k L_{2}}
$$

Figure 2. $\Gamma(V, E)$ Lasso graph $\mathrm{V}=\{\mathrm{A}, \mathrm{B}\}$; $\mathrm{E}=\left\{\left[0, L_{1}\right],\left[0, L_{2}\right]\right\}$ where 0 corresponding connected point ; Neumann condition on vertices

Example: Lasso graph

The system can be written as:

Notation:
$S \quad D(k)$
$k^{2}(k \neq 0)$ is the eigenvalue of the graph iff $\operatorname{det}(I-S D(k))=0$, we call the determinant secular determinant.

Secular determinant (Neumann condition graph)

For the general Neumann condifion graph $\Gamma(\mathrm{V}, \mathrm{E})$, first consider the single vertex in $\Gamma(V, E)$, which has d edges attach to it. Denote the length of j -th edge is L_{j},
the solution on j-th edge:

$$
\begin{equation*}
f_{j}=a_{j} \cdot e^{i k x}+a_{\bar{\jmath}} \cdot e^{i k\left(L_{j}-x\right)} \tag{16}
\end{equation*}
$$

Apply the vertex condition:

$$
\begin{equation*}
\sum_{j=1}^{d} a_{j}-\sum_{j=1}^{d} a_{\bar{j}} e^{i k L_{j}}=0 \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
a_{j}+a_{\bar{\jmath}} e^{i k L_{j}}=a_{l}+a_{\bar{l}} e^{i k L_{l}}, \quad \text { for } \forall l, k \in N^{*} \text { and } l, k \leq d \tag{18}
\end{equation*}
$$

By (16)\&(17)\&(18) we solving a_{n} for $1 \leq n \leq d$:

$$
\begin{equation*}
a_{n}=-a_{\bar{n}} e^{i k L_{n}}+\frac{2}{d} \sum_{j=1}^{d} a_{\bar{j}} e^{i k L_{j}} \tag{19}
\end{equation*}
$$

Secular determinant (Neumann condition graph)

Then we consider the whole graph $\Gamma(V, E)$

In the $2|E|$-dimensional complex space, with dimensions indexed by the directed edges. we get $2|E| \times 2|E|$ matrix S and $D(k)$ for $\Gamma(V, E)$:

$$
\begin{equation*}
D(k)_{b, b}=e^{i k L_{b}} \tag{20}
\end{equation*}
$$

$$
S_{b^{\prime}, b}= \begin{cases}\frac{2}{d}-1 & \text { if } b^{\prime}=\bar{b} \tag{21}\\ \frac{2}{d} & \text { if } b^{\prime} \text { follows } b \text { and } b^{\prime} \neq \bar{b} \\ 0 & \text { otherwise }\end{cases}
$$

The secular determinant is $\operatorname{det}(I-S D(k))$

Proposal

- Change a vertex condition (Neumann condition to Dirichlet condition)
e.g.

τ

Figure 4.

Conjecture:

Define a quantum graph τ with Neumann condition on its vertices, obtained the quantum graph τ^{\prime} by changing one of the vertices condition to Dirichlet condition. Define $f(k)=\frac{\operatorname{det}\left(I-S_{\tau} D_{\tau}(k)\right)}{\operatorname{det}\left(I-S_{\tau^{\prime}} D_{\tau^{\prime}}(k)\right)}$, and $f(k)$ has negative derivatives except the location where k^{2} is eigenvalue of τ^{\prime}.

Application

Graph 1. part of the graph for $f(k)$

There is only one eigenvalue lies between two poles and the derivative is always negative. Using Secant Algorithm can easily solve this eigenvalue

Application

To find the eigenvalues of a complicated quantum graph, we can always "break it down" into trivial intervals, and iteratively we solve the eigenvalues.

Acknowledgement

Supervisor: Professor Berkolaiko

An analogous result in the case of matrix

Theorem:

Define a vector $\vec{V} \in C^{n}$, obtained matrix B by $B=\vec{V} \cdot \vec{V}^{T}$, for any real Hermitian matrix $A \in C^{n \times n}$, we have the function $f(\lambda)=\frac{\operatorname{det}(A+B-\lambda I)}{\operatorname{det}(A-\lambda I)}$ has negative derivatives except for the locations λ is the eigenvalue for A.

Secular Determinant

$$
S_{b^{\prime}, b}=\frac{2}{d}-1 \quad \text { if } b^{\prime}=\bar{b}
$$

$$
S_{b^{\prime}, b}=\frac{2}{d}
$$

if b^{\prime} follows b and $b^{\prime} \neq \bar{b}$

