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ABSTRACT
Let N represent the set of all positive integers. Fix a < b ∈ N,

and let Ma,b = {n ∈ N : n ≡ a mod b}. If the set Ma,b is closed
under multiplication (that is if a2 ≡ a mod b), then it is known
as an Arithmetical Congruence Monoid or ACM. In this poster, we
present software for computing factorizations in ACMs. Using this
software we provide examples of ACMs that exhibit periodic re-
ducibility as well as some that don’t

INTRODUCTION TO ACMS
ACMs are defined as follows

• A set of all numbers that are a mod b

• a2 ≡ a mod b

For example: the Hilbert Monoid M1,4

1, 5, 9, 13, 17, 21, 25

There exist both prime and composite elements that are irreducible

prime nonprime
13 49
53 121

997 933

Also, there exist elements that are uniquely factorable
25 = 5 · 5
189 = 9 · 21

Finally, ACMs lead to nonuniqe factorization

441 = 21 · 21 = 9 · 49
693 = 21 · 33 = 9 · 77

Elements that can be factored by elements are termed reducible

SAMPLE CODE
N = ArithmeticCongruenceMonoid([1,4])
N.ArithmeticFactorizations(1025 + 1)

[[100001, 1267801, 78875943472201],
[55561, 2281841, 78875943472201],
[2761, 45918641, 78875943472201]]

N = ArithmeticCongruenceMonoid([4,6])
N.MaxElasticityToElement(106)

1.6666666666666667
N.PercentIrreducible(106)

0.6272987454025092

THE PROGRAM

To understand the program, take 4412, with the following fac-
torization:

4412 = 34 · 74

It then finds every combination of these primes

3170, 3270, 3370, 3470, 3171...3474

It then removes all factors that aren’t in the monoid

[1, 9, 21, 49, 441] ≡ 1 mod 4

A recursive program then finds every way to multiply these num-
bers to the original, by branching lists.
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THE QUESTION

Nonunique factorization leads us to ask the question:
Is there is any pattern in element reducibility?

APERIODIC ACMS
Below is an example graph of an aperiodic ACM
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PERIODIC ACMS
Here are a few examples of periodic ACMs
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As can be seen, all periodic ACMs follow the following conditions

• a 6= 1

• b = k · a where k ∈ Z+
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THEOREM

Theorem:Ma,b is periodic if and only if b = k · a for some k ∈ Z+


