Roots of Sparse Polynomials over Finite Fields

Zander Kelley

Texas A\&M University

Motivation: Finite Fields and Cryptography

- For a prime p, the associated prime field \mathbb{F}_{p} is the set $\{0,1,2, \ldots, p-1\}$ equipped with modular addition and multiplication (i.e the results of computations "wrap around").
- Example: $\mathbb{F}_{11}=\{0,1,2, \ldots, 10\}$
- $7+8=15 \quad(\bmod 11)=4$
- $7-8=-1 \quad(\bmod 11)=10$
- $6 * 8 \quad=48 \quad(\bmod 11)=4$
- $6 / 4=8$
- $2^{4} \quad=16 \quad(\bmod 11)=5$
- $\log _{2} 5=4$
- There is no known fast algorithm for taking logs in finite fields (modular exponentiation is a "one-way function").

The Diffie-Hellman Public Key Exchange

- To send and receive encrypted messages, two parties must agree on a secret key k, a large integer which can be used to scramble and unscramble messages.
- Establishing a shared key over the Internet is a challenge: it is very easy to intercept or eavesdrop on messages.
- The Diffie-Hellman key exchange creates privacy in a public world (by using exponentiation in \mathbb{F}_{p}).

Alice

(public) Bob

Pick a large prime p
$\longrightarrow p \longrightarrow$
Pick a number $g \in \mathbb{F}_{p}$
Pick a random $x \in \mathbb{F}_{p}$

$$
\longrightarrow g \longrightarrow
$$

Pick a random $y \in \mathbb{F}_{p}$
Compute \& Send $g^{x}=a \quad \longrightarrow a \longrightarrow$

$$
\longleftarrow b \longleftarrow \quad b=g^{y}
$$

Set $k=b^{x}=\left(g^{y}\right)^{x}=g^{x y}$ $k=a^{y}=\left(g^{x}\right)^{y}=g^{x y}$

Canneti et al. - Statistical Properties of D-H Triples

- It is important that the result of D-H, $k=g^{x y}$, is not predictable.
- In 2002, Canetti et al. prove that the triples $\left(g^{x}, g^{y}, g^{x y}\right)$ become uniformly disturbed as $p \rightarrow \infty$.
- The heart of their proof relies on an upper bound on the number of roots of tetranomials over \mathbb{F}_{p} - polynomials of the form $f(x)=x^{a_{1}}+x^{a_{2}}+x^{a_{3}}+x^{a_{4}}$.
- Since then, this bound has proved to be widely useful and has been applied to many other number-theoretic problems.

$$
x^{51}+x^{2}-x-1 \text { over } \mathbb{R}
$$

$$
x^{51}+x^{2}-x-1 \text { over } \mathbb{F}_{109}
$$

- \#roots ≤ 51
(degree bound)
- $\#$ roots $\leq 2(\#$ terms $)=8$
(Descartes' rule)

- \#roots ≤ 109 (trivial bound)
- \#roots ≤ 51
(degree bound)

Refined Version of Sparsity-Dependent Bound

$$
\text { Let } f(x)=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}+\cdots+c_{t} x^{a_{t}} \in \mathbb{F}_{p}[x] .
$$

Theorem (Canetti et al., 2002)

$$
\# \operatorname{roots}(f) \leq 2(p-1)^{1-\frac{1}{t-1}} D^{\frac{1}{t-1}}+O\left((p-1)^{1-\frac{2}{t-1}} D^{\frac{2}{t-1}}\right)
$$

where $D=\min _{i} \max _{j \neq i} \operatorname{gcd}\left(a_{i}-a_{j}, p-1\right)$.

Theorem (ZK, 2016)

$$
\# \operatorname{roots}(f) \leq 2(p-1)^{1-\frac{1}{t-1}} C^{\frac{1}{t-1}},
$$

where $C=\max \left\{|H|: H \leq \mathbb{F}_{p}^{*}\right.$ and $\left.f\right|_{a H} \equiv 0$ for some $\left.a \in \mathbb{F}_{p}^{*}\right\}$. Furthermore,

$$
C \leq \max \left\{k \mid(p-1): \forall a_{i}, \exists a_{j \neq i} \text { with } a_{i} \equiv a_{j} \bmod k\right\} \leq D
$$

Outline of Proof

- Let $f(x)=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}+\cdots+c_{t} x^{a_{t}} \in \mathbb{F}_{p}[x]$.
- The map $x \mapsto x^{e}$ is a bijection (unless $\operatorname{gcd}(e, p-1)>1$), so it simply shuffles the elements of \mathbb{F}_{p}.
- Let $g(x)=f\left(x^{e}\right)=c_{1} x^{e a_{1}}+c_{2} x^{e a_{2}}+\cdots+c_{t} x^{e a_{t}}$.
- For all $x \in \mathbb{F}_{p}, x^{p-1}=1$.
- Let $h(x)=c_{1} x^{e a_{1} \bmod (p-1)}+\cdots+c_{t} x^{e a_{t} \bmod (p-1)}$.
- We have $\# \operatorname{roots}(f)=\# \operatorname{roots}(g)=\# \operatorname{roots}(h) \leq \operatorname{degree}(h)$.
- Idea: find e so that all of the exponents of h are small.
- For $e=1,2, \ldots, p-1$, let
$l_{e}=\left(e a_{1} \bmod (p-1), \ldots, e a_{t} \bmod (p-1)\right)$;
look for l_{e} with small norm $\left\|l_{e}\right\|=\max _{i}\left|e a_{i} \bmod (p-1)\right|$.
- $l_{i}-l_{j}=l_{(i-j)}$, so we can equivalently look for two nearby vectors and take their difference.
- Let $d=\min _{i<j}\left\|l_{i}-l_{j}\right\|$.

Two-Dimensional Example

- $d=\min _{i<j}\left\|l_{i}-l_{j}\right\|$.
- $n \cdot \operatorname{volume}(B) \leq \operatorname{volume}(\Omega)$.
- $(p-1) \cdot d^{2} \leq(p-1)^{2} \Longrightarrow d \leq \sqrt{p-1}$.
- By backtracking, we prove that $\# \operatorname{roots}(f) \leq \sqrt{p-1}$.

Roots of Sparse Polynomials over Finite Fields

Zander Kelley

Texas A\&M University

