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Motivation: Finite Fields and Cryptography

For a prime p, the associated prime field Fp is the set
{0, 1, 2, . . . , p− 1} equipped with modular addition and
multiplication (i.e the results of computations “wrap
around”).

Example: F11 = {0, 1, 2, . . . , 10}
• 7 + 8 = 15 (mod 11) = 4
• 7− 8 = −1 (mod 11) = 10
• 6 ∗ 8 = 48 (mod 11) = 4
• 6/4 = 8
• 24 = 16 (mod 11) = 5
• log2 5 = 4

There is no known fast algorithm for taking logs in finite
fields (modular exponentiation is a “one-way function”).
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The Diffie-Hellman Public Key Exchange

To send and receive encrypted messages, two parties must
agree on a secret key k, a large integer which can be used
to scramble and unscramble messages.

Establishing a shared key over the Internet is a challenge:
it is very easy to intercept or eavesdrop on messages.

The Diffie-Hellman key exchange creates privacy in a
public world (by using exponentiation in Fp).

Alice (public) Bob

Pick a large prime p −→ p −→
Pick a number g ∈ Fp −→ g −→
Pick a random x ∈ Fp Pick a random y ∈ Fp

Compute & Send gx = a −→ a −→
←− b←− b = gy

Set k = bx = (gy)x = gxy k = ay = (gx)y = gxy
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Canneti et al. - Statistical Properties of D-H Triples

It is important that the result of D-H, k = gxy, is not
predictable.

In 2002, Canetti et al. prove that the triples (gx, gy, gxy)
become uniformly disturbed as p→∞.

The heart of their proof relies on an upper bound on the
number of roots of tetranomials over Fp - polynomials of
the form f(x) = xa1 + xa2 + xa3 + xa4 .

Since then, this bound has proved to be widely useful and
has been applied to many other number-theoretic problems.
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R vs Fp

x51 + x2 − x− 1 over R x51 + x2 − x− 1 over F109

#roots ≤ 51
(degree bound)

#roots ≤ 2(#terms) = 8
(Descartes’ rule)

#roots ≤ 109
(trivial bound)

#roots ≤ 51
(degree bound)
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Refined Version of Sparsity-Dependent Bound

Let f(x) = c1x
a1 + c2x

a2 + · · ·+ ctx
at ∈ Fp[x].

Theorem (Canetti et al., 2002)

#roots(f) ≤ 2(p− 1)1−
1

t−1D
1

t−1 + O
(

(p− 1)1−
2

t−1D
2

t−1

)
,

where D = mini maxj 6=i gcd(ai − aj , p− 1).

Theorem (ZK, 2016)

#roots(f) ≤ 2(p− 1)1−
1

t−1C
1

t−1 ,

where C = max{|H| : H ≤ F∗p and f |aH ≡ 0 for some a ∈ F∗p}.
Furthermore,

C ≤ max{k | (p− 1) : ∀ai,∃aj 6=i with ai ≡ aj mod k} ≤ D.
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Outline of Proof

Let f(x) = c1x
a1 + c2x

a2 + · · ·+ ctx
at ∈ Fp[x].

The map x 7→ xe is a bijection (unless gcd(e, p− 1) > 1),
so it simply shuffles the elements of Fp.

Let g(x) = f(xe) = c1x
ea1 + c2x

ea2 + · · ·+ ctx
eat .

For all x ∈ Fp, x
p−1 = 1.

Let h(x) = c1x
ea1 mod (p−1) + · · ·+ ctx

eat mod (p−1).

We have #roots(f) = #roots(g) = #roots(h) ≤ degree(h).

Idea: find e so that all of the exponents of h are small.
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Reduction to Geometric Problem

For e = 1, 2, . . . , p− 1, let
le = (ea1 mod (p− 1), . . . , eat mod (p− 1));
look for le with small norm ‖le‖ = maxi |eai mod (p− 1)|.
li − lj = l(i−j), so we can equivalently look for two nearby
vectors and take their difference.

Let d = mini<j ‖li − lj‖.
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Two-Dimensional Example

d = mini<j ‖li − lj‖.
n · volume(B) ≤ volume(Ω).

(p− 1) · d2 ≤ (p− 1)2 =⇒ d ≤
√
p− 1.

By backtracking, we prove that #roots(f) ≤
√
p− 1.
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