Roots of Sparse Polynomials over Finite Fields

Zander Kelley

Texas A&M University

UNDERGRADUATE
8 | RESEARCH
SCHOLAR

Zander Kelley Roots of Sparse Polynomials over Finite Fields



Motivation: Finite Fields and Cryptography

e For a prime p, the associated prime field [, is the set
{0,1,2,...,p — 1} equipped with modular addition and
multiplication (i.e the results of computations “wrap
around”).

Example: Fy; = {0,1,2,...,10}
e7+8 =15 (modl1l)=4

e7-8 =-1 (modll)=10
e6x8 =48 (modl1l)=4
°G/4 =38
o 24 =16 (mod11)=5
e logy,d =4

@ There is no known fast algorithm for taking logs in finite

fields (modular exponentiation is a “one-way function”).
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The Diffie-Hellman Public Key Exchange

o To send and receive encrypted messages, two parties must
agree on a secret key k, a large integer which can be used
to scramble and unscramble messages.

o Establishing a shared key over the Internet is a challenge:
it is very easy to intercept or eavesdrop on messages.

o The Diffie-Hellman key exchange creates privacy in a
public world (by using exponentiation in F)).

Alice (public)  Bob

Pick a large prime p —p —

Pick a number g € I, — g —

Pick a random z € I, Pick a random y € F,

Compute & Send ¢* =a —a —
—b+— b=g¥
Set k =b" = (g¥)* = g™V k=a¥=(g°)¥ = g™
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Canneti et al. - Statistical Properties of D-H Triples

It is important that the result of D-H, k = ¢*¥, is not
predictable.

In 2002, Canetti et al. prove that the triples (g%, g¥, ")
become uniformly disturbed as p — oo.

(]

@ The heart of their proof relies on an upper bound on the
number of roots of tetranomials over I, - polynomials of
the form f(x) = % + %2 + 2% 4 2.

@ Since then, this bound has proved to be widely useful and
has been applied to many other number-theoretic problems.
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@ #roots <51 @ #roots < 109
(degree bound) (trivial bound)
e #roots < 2(#terms) = 8 @ #roots < 51
(Descartes’ rule) (degree bound)
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Refined Version of Sparsity-Dependent Bound

Let f(z) = c12™ + cpz® + - - - + cpa™ € Fp[z].

Theorem (Canetti et al., 2002)

#roots(f) < 2(p —1)'"FTDTT +0 ((p - 1) "FTDTT ),

where D = min; max;; ged(a; — aj,p — 1).

Theorem (ZK, 2016)

#roots(f) < 2(p — 1)1_t—%0t—%7

where C' = max{|H| : H <F; and f|,z = 0 for some a € F}}.
Furthermore,

C <max{k|(p—1) : Va;,3ajx with a; = aj mod k} < D.

’
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Outline of Proof

(]

Let f(z) = 1z + ez + - - - + cz™ € Fplz].

The map x +— z€ is a bijection (unless ged(e,p — 1) > 1),
so it simply shuffles the elements of [F),.

Let g(x) = f(2°) = c12°™ + coz*2 + - - - 4 ¢,z

e For all x € F), Pl =1.

Let h(x) = ¢z mod (p—1) + -+ ppeat mod (p—1)

We have #roots(f) = #roots(g) = #roots(h) < degree(h).

Idea: find e so that all of the exponents of h are small.

(]

(]

(]
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Reduction to Geometric Problem

e Fore=1,2,...,p—1, let
le = (eap mod (p —1),...,ea; mod (p — 1));
look for [, with small norm ||l|| = max; |ea; mod (p — 1)|.

e [; —lj =l(;—j;), so we can equivalently look for two nearby
vectors and take their difference.

o Let d = mini<j ”ll — l]H

(0,p-1) (p-1,p-1)

(0,0)
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Two-Dimensional Example

d = min,;<; ||l; — ;]|

n - volume(B) < volume().

p-1)-d?<(p—-12 = d<+p—1L

By backtracking, we prove that #roots(f) < /p — 1.

(0,p-1) (p-1,p-1)
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