An Application of Compressive Sensing to Image and Video Compression

Nathan LaFerney & Carlos Munoz

Nuclear Power Institute, Texas A&M University

March 26, 2015

• Compressive Sensing is a relatively young area of Signal Processing that deals with compressing and reconstructing linearly-modeled signals.

- Compressive Sensing is a relatively young area of Signal Processing that deals with compressing and reconstructing linearly-modeled signals.
- The field was pioneered by Candés, Romberg, Tao [1][2][3][4] and Donoho [5].

- Compressive Sensing is a relatively young area of Signal Processing that deals with compressing and reconstructing linearly-modeled signals.
- The field was pioneered by Candés, Romberg, Tao [1][2][3][4] and Donoho [5].
- Compressive Sensing works in a 'naive' manner, requiring no prior knowledge of the signal and instead relying on the structure that are often found in linearly-modeled signals.

Suppose $\mathbf{x} \in \mathbb{R}^n$ is our signal that we are interested in compressing. We perform the compression by multiplying \mathbf{x} by Φ , an $m \times n$ -matrix, where $m \ll n$.

$$\mathbf{y} = \Phi \mathbf{x} \tag{1}$$

Thus **y** represents our compressed signal. By imposing conditions on **x** and Φ , we can recover our signal. A signal can be recovered if there exists a $\delta_{\mathcal{K}} \in (0,1)$, where the Φ matrix satisfies

$$(1 - \delta_{\mathcal{K}}) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Phi}\mathbf{x}\|_2^2 \le (1 + \delta_{\mathcal{K}}) \|\mathbf{x}\|_2^2.$$
(2)

where $\mathbf{x} \in \Sigma_{K} = {\mathbf{x} : ||\mathbf{x}||_{0} \le K}$, $|| \cdot ||$ denoting the sparisty of the vector, the number of nonzero entires. This property is known as the *Restricted Isometry Property (RIP)*.

If Φ is an $m \times n$ -matrix, then here are some ways we can choose Φ :

- If Φ is an $m \times n$ -matrix, then here are some ways we can choose Φ :
 - Construct *Phi* by choosing the entries from a Normal distribution with zero mean and a standard deviation of m^{-1} .

If Φ is an $m \times n$ -matrix, then here are some ways we can choose Φ :

- Construct *Phi* by choosing the entries from a Normal distribution with zero mean and a standard deviation of m^{-1} .
- Construct *Phi* by randomly choosing *m* distinct rows of a wavelet matrix.

Theorem

[6] Let Φ be an $m \times n$ -matrix that satisfies the RIP of order 2K with constant $\delta \in (0, \frac{1}{2})$. Then

$$m \ge C \log\left(\frac{N}{K}\right) \tag{3}$$

where $C = (2 \log(\sqrt{24} + 1)^{-1})$.

Theorem

[6] If

$$K < \frac{1}{2} \left(1 + \frac{1}{\mu(\Phi)} \right) \text{ where } \mu(\Phi) = \max_{1 \le i < j \le n} \frac{|\langle \phi_i, \phi_j \rangle|}{\|\phi_i\|_2 \|\phi_j\|_2}$$
(4)

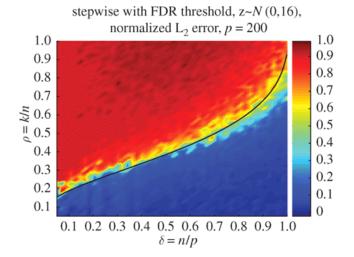
then for each measurement vector $\mathbf{y} \in \mathbb{R}^m$ there exists at most one signal $\mathbf{x} \in \Sigma_K$ such that $\mathbf{y} = \Phi \mathbf{x}$.

• To recover our original signal, we solve the convex optimization problem

$$\min_{\mathbf{x}} \|\mathbf{y} - \Phi \mathbf{x}\|_2 + \|\mathbf{x}\|_1 \tag{5}$$

- Algorithms such as linear programming and gradient descent can be used.
- The algorithm we use is called the *Multihypothesis Block-based Compressive Sensing*.

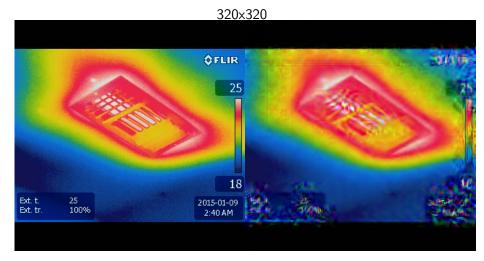
Donoho-Tanner Phase Transition [7]



- A satellite takes a picture while in flight.
- The image is then separated into a red, green, and blue channels.
- Each Channel is then taken and multiplied by a different Φ Matrix.

- The picture is then received on Earth.
- Each individual channel is reconstructed by parallel computing using a cluster of computers.
- After each channel is reconstructed the channels are combined back into one picture.

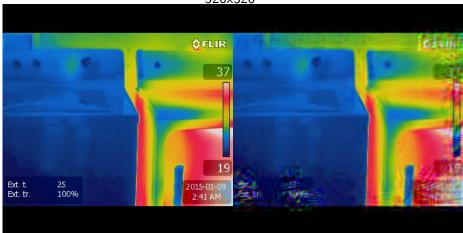
Reconstructed Images



Nathan LaFerney & Carlos Munoz

Student Research Week Spring 2015

March 26, 2015 12 / 21



- The video is taken and broken up into frames.
- Each frame is treated as image and compressed then reconstructed using the same procedure as in the previous two slides.
- The main difference is that in this code, after the 1st frame, the previous frame is used as an initial guess.

E. Candés, J. Romberg, and T.Tao,

Stable signal recovery from incomplete and inaccurate information, Commun. Pure Appl. Math, vol.59, pp.1207-1233, 2005.

E. Candés, T.Tao,

The Dantzig selector. Statistical estimation when p is much larger than n,

Ann. Statist. 2007 [Online]. Available: http://arxiv.org/abs/math.ST/0506081.

E. Candés, T.Tao,

Near optimal signal recovery from random projections: Universal encoding strategies,

IEEE Trans. Inform. Theory, vol.52, pp.5406-5425, Dec. 2006.

E. Candés, J. Romberg, and T.Tao,

Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,

IEEE Trans. Inform. Theory, vol.52, pp.489-509, Feb. 2006.

D. Donoho,

Compressed Sensing,

IEEE Trans. Inform. Theory, vol.52, pp. 1289-1306, Apr. 2006.

 Richard Baraniuk, Mark A. Davenport, Marco F. Duarte, Chinmay Hegde, Jason Laska, Mona Sheikh, Wotao Yin, An Introduction to Compressive Sensing, Connexions, Rice University, Houston, Texas, Online: < http://cnx.org/content/col11133/1.5/ >.

David Donoho, Jared Tanner,

Observed Universality of Phase Transitions in High-Dimensional Geometry, with Implications for Modern Data Analysis and Signal Processing.