Monomial Solutions to Generalized Yang-Baxter Equations in Low Dimensions

Andrew S. Nemec

Texas A&M University

March 26, 2015 Mentored by Dr. Eric Rowell

イロン イヨン イヨン イヨン

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Yang-Baxter Equations

Remark

• The Yang-Baxter equation (YBE) is important to the fields of statistical mechanics, quantum field theory, knot theory, quantum topology, and quantum information science.

◆□> ◆□> ◆注> ◆注>

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Yang-Baxter Equations

Remark

• The Yang-Baxter equation (YBE) is important to the fields of statistical mechanics, quantum field theory, knot theory, quantum topology, and quantum information science.

Definition

• The *d*-dimensional YBE is a matrix equation for a nondegenerate (invertable) complex matrix *R*. We say *R* is a solution to the YBE if the following relation holds:

イロン イヨン イヨン イヨン

э

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Yang-Baxter Equations

Remark

• The Yang-Baxter equation (YBE) is important to the fields of statistical mechanics, quantum field theory, knot theory, quantum topology, and quantum information science.

Definition

• The *d*-dimensional YBE is a matrix equation for a nondegenerate (invertable) complex matrix *R*. We say *R* is a solution to the YBE if the following relation holds:

 $(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R),$

where I is the identity matrix and \otimes is the Kronecker product.

イロン イヨン イヨン イヨン

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Generalized Yang-Baxter Equations

Remark

 In 2007, E. Rowell, Y. Zhang, Y. Wu, and M. Ge proposed a generalized Yang-Baxter equation (gYBE).

・ロン ・四マ ・ヨマ ・ヨマ

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Generalized Yang-Baxter Equations

Remark

 In 2007, E. Rowell, Y. Zhang, Y. Wu, and M. Ge proposed a generalized Yang-Baxter equation (gYBE).

Definition

• If V is a complex vector space of dimension d, the (d, m, ℓ) -gYBE is an equation for an invertible operator $R : V^{\otimes m} \to V^{\otimes m}$ such that $(R \otimes I_V^{\otimes \ell}) (I_V^{\otimes \ell} \otimes R) (R \otimes I_V^{\otimes \ell}) = (I_V^{\otimes \ell} \otimes R) (R \otimes I_V^{\otimes \ell}) (R \otimes I_V^{\otimes \ell}).$

(日) (同) (E) (E) (E)

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Generalized Yang-Baxter Equations

Example

• The *d*-dimensional YBE corresponds to the (d, 2, 1)-gYBE.

イロン イヨン イヨン イヨン

æ

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Generalized Yang-Baxter Equations

Example

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Generalized Yang-Baxter Equations

Example

• The *d*-dimensional YBE corresponds to the (d, 2, 1)-gYBE.

• In 2011, R. Chen used R_{ζ} to find three solution families of the (2, 3, 1)-gYBE.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Permutation Solutions

Remarks

• Due to the enormous number of equations that must be solved in order to completely solve a gYBE, we focused on the simplest set of solutions, the permutation solutions proposed by V. Drinfeld.

イロン イヨン イヨン イヨン

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Permutation Solutions

Remarks

- Due to the enormous number of equations that must be solved in order to completely solve a gYBE, we focused on the simplest set of solutions, the permutation solutions proposed by V. Drinfeld.
- Permutation matrices are those matrices with a single 1 in each column and row and 0 everywhere else.

<ロ> (四) (四) (三) (三) (三)

Yang-Baxter Equations Generalized Yang-Baxter Equations Permutation Solutions

Permutation Solutions

Remarks

- Due to the enormous number of equations that must be solved in order to completely solve a gYBE, we focused on the simplest set of solutions, the permutation solutions proposed by V. Drinfeld.
- Permutation matrices are those matrices with a single 1 in each column and row and 0 everywhere else.

Example

٩	The	re a	ire 4	4 no	ont	rivi	al p	ern	nuta	atic	on s	olu	tior	ns to	o tl	he 2	2-D	YE	3E:	
	(1)	0	0	0)		/0	0	0	1		/0	1	0	0)		/0	0	1	0)	
	0	0	1	0		0	1	0	0		0	0	0	1		1	0	0	0	
	0	1	0	0	,	0	0	1	0	,	1	0	0	0	,	0	0	0	1	
	0	0	0	1)		$\backslash 1$	0	0	0/		0/	0	1	0/		0/	1	0	0/	

Generating Permutation Solutions Restrictions on Monomial Matrices

Generating Permutation Solutions

Remarks

• To find all of the permutation solutions to the (2, 3, 1)- and (2, 3, 2)-gYBE the most straight forward approach is to generate all 8! permutation matrices of order 8 and then plug them into the equations and see if they satisfy either one.

・ロト ・回ト ・ヨト ・ヨト

Generating Permutation Solutions Restrictions on Monomial Matrices

Generating Permutation Solutions

Remarks

- To find all of the permutation solutions to the (2, 3, 1)- and (2, 3, 2)-gYBE the most straight forward approach is to generate all 8! permutation matrices of order 8 and then plug them into the equations and see if they satisfy either one.
- We implemented Heap's algorithm for generating permutations in *Maple* so that it treats the columns of the matrix it is operating on as the elements that are permuted.

(日) (同) (E) (E) (E)

Generating Permutation Solutions Restrictions on Monomial Matrices

Generating Permutation Solutions

Remarks

- To find all of the permutation solutions to the (2, 3, 1)- and (2, 3, 2)-gYBE the most straight forward approach is to generate all 8! permutation matrices of order 8 and then plug them into the equations and see if they satisfy either one.
- We implemented Heap's algorithm for generating permutations in *Maple* so that it treats the columns of the matrix it is operating on as the elements that are permuted.

Results

• Using our process, we discovered 14 nontrivial solutions to the (2,3,1)-gYBE and 10 nontrivial solutions to the (2,3,2)-gYBE.

Generating Permutation Solutions Restrictions on Monomial Matrices

Generating Permutation Solutions

схаттріе											
	/0	0	0	1	0	0	0	0\			
	0	0	1	0	0	0	0	0			
	0	0	0	0	1	0	0	0			
• P	0	0	0	0	0	1	0	0			
• $\Lambda_{10} =$	0	0	0	0	0	0	0	1			
	0	0	0	0	0	0	1	0			
	1	0	0	0	0	0	0	0			
	/0	1	0	0	0	0	0	0/			

・ロン ・回 と ・ ヨン ・ ヨン

æ

Generating Permutation Solutions Restrictions on Monomial Matrices

Generating Permutation Solutions

Example • $R_{10} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ This can be more succinctly described using the permutation (0, 6, 5, 3)(1, 7, 4, 2).

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Remarks

 One of the good things about permutation solutions is that they can be generalized into monomial matrix solutions: matrices with a single nonzero element in each column and row.

・ 母 と ・ ヨ と ・ ヨ と

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Remarks

 One of the good things about permutation solutions is that they can be generalized into monomial matrix solutions: matrices with a single nonzero element in each column and row.

Example

• To illustrate we will use a (2,2,1)-gYBE (2-D YBE) permutation solution.

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Remarks

 One of the good things about permutation solutions is that they can be generalized into monomial matrix solutions: matrices with a single nonzero element in each column and row.

Example

• To illustrate we will use a (2, 2, 1)-gYBE (2-D YBE) permutation solution.

•
$$Q := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, $A := \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$, $R := AQ = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & b \\ c & 0 & 0 & 0 \\ 0 & 0 & d & 0 \end{pmatrix}$

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Remarks

 One of the good things about permutation solutions is that they can be generalized into monomial matrix solutions: matrices with a single nonzero element in each column and row.

Example

• To illustrate we will use a (2,2,1)-gYBE (2-D YBE) permutation solution.

•
$$Q := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, $A := \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$, $R := AQ = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & b \\ c & 0 & 0 & 0 \\ 0 & 0 & d & 0 \end{pmatrix}$
• $d^{2}(a-b), db(c-d), db(a-b), -c(ad-bc), ca(c-d), b^{2}(c-d), -a(ad-bc), a^{2}(c-d), d(a-b)(a^{2}+ab+b^{2})$

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Example

•
$$a = b, c = d$$

・ロン ・回と ・ヨン ・ヨン

ъ

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Example

•
$$a = b, c = d$$

• $R = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & a \\ c & 0 & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix}$

・ロン ・回と ・ヨン ・ヨン

æ

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Example

- a = b, c = d• $R = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & a \\ c & 0 & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix}$
- We do not need to check for far commutativity, but if so it would be done in the same fashion.

・ロン ・回と ・ヨン ・ヨン

æ

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Example

- a = b, c = d• $R = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & a \\ c & 0 & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix}$
- We do not need to check for far commutativity, but if so it would be done in the same fashion.
- Now checking for restrictions so that *R* is unitary: $a\overline{a} = 1, c\overline{c} = 1$

・ロト ・回ト ・ヨト ・ヨト

Generating Permutation Solutions Restrictions on Monomial Matrices

Restrictions on Monomial Matrices

Example

- a = b, c = d• $R = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & a \\ c & 0 & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix}$
- We do not need to check for far commutativity, but if so it would be done in the same fashion.
- Now checking for restrictions so that *R* is unitary:

$$a\overline{a} = 1, c\overline{c} = 1$$

• $R = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & a \\ c & 0 & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix}, |a| = |c| = 1$

・ロト ・回ト ・ヨト ・ヨト

æ

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions

Definition

• The negation of a, denoted \overline{a} , is the opposite of a.

イロン イヨン イヨン イヨン

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions

Definition

- The negation of a, denoted \overline{a} , is the opposite of a.
- The exclusive or (XOR) of *a* and *b*, denoted *a* ⊕ *b*, is true when either *a* or *b* is true but not both.

・ロト ・回ト ・ヨト ・ヨト

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions

Definition

- The negation of a, denoted \overline{a} , is the opposite of a.
- The exclusive or (XOR) of *a* and *b*, denoted *a* ⊕ *b*, is true when either *a* or *b* is true but not both.

Remark

• We want to find Boolean functions f, g, h such that $|a, b, c \rangle \mapsto |f(a, b, c), g(a, b, c), h(a, b, c) \rangle$.

イロン イヨン イヨン イヨン

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions

Definition

- The negation of a, denoted \overline{a} , is the opposite of a.
- The exclusive or (XOR) of *a* and *b*, denoted *a* ⊕ *b*, is true when either *a* or *b* is true but not both.

Remark

- We want to find Boolean functions f, g, h such that $|a, b, c \rangle \mapsto |f(a, b, c), g(a, b, c), h(a, b, c) \rangle$.
- It turns out that we can describe all (2,3,1)- and (2,3,2)-gYBE permutation solutions in this form using only negation and XOR operations.

・ロト ・回ト ・ヨト ・ヨト

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions

Example

To illustrate what we mean, we will consider

/0	1	0	0)
0	0	0	1
1	0	0	0
0/	0	1	0/

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions

Example

- To illustrate what we mean, we will consider $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.
- We make a truth table that describes the permutation:

а	b	f (a, b)	g (a, b)
0	0	1	0
0	1	0	0
1	0	1	1
1	1	0	1

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions

Example

- To illustrate what we mean, we will consider $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{pmatrix}$.
- We make a truth table that describes the permutation:

а	b	f (a, b)	g (a, b)
0	0	1	0
0	1	0	0
1	0	1	1
1	1	0	1

• From the table we find that the Boolean representation of this solution is $|a, b \rangle \mapsto |\overline{b}, a \rangle$.

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions: Nontrivial (2, 3, 1)-gYBE Solutions

Results

- R_{01} : $|a, b, c \rangle \mapsto |\overline{a \oplus b}, b, \overline{b \oplus c} \rangle$
- $R_{02}: |a, b, c > \mapsto |b, a, c >$
- R_{03} : $|a, b, c > \mapsto |a, c, b >$
- R_{04} : $|a, b, c \rangle \mapsto |a, a \oplus b \oplus c, c \rangle$
- R_{05} : $|a, b, c > \mapsto |\overline{b}, \overline{a}, c >$
- R_{06} : $|a, b, c \rangle \mapsto |a \oplus b, \overline{b}, \overline{b \oplus c} \rangle$
- R_{07} : $|a, b, c \rangle \mapsto |a \oplus b, b, b \oplus c \rangle$

イロト イヨト イヨト イヨト

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions: Nontrivial (2, 3, 1)-gYBE Solutions

Results

- $R_{08}: |a, b, c > \mapsto |\overline{b}, a, c >$
- $R_{09}: |a, b, c > \mapsto |a, \overline{c}, \overline{b} >$
- $R_{10}: |a, b, c > \mapsto |\overline{a \oplus b}, \overline{b}, b \oplus c >$
- $R_{11}: |a, b, c > \mapsto |a, \overline{a \oplus b \oplus c}, c >$
- $R_{12}: |a, b, c > \mapsto |b, \overline{a}, c >$
- R_{13} : $|a, b, c > \mapsto |a, \overline{c}, b >$
- $R_{14}: |a, b, c > \mapsto |a, c, \overline{b} >$

・ロト ・回ト ・ヨト ・ ヨト

Boolean Representation of Solutions Extension to Larger Solutions

Boolean Representation of Solutions: Nontrivial (2, 3, 2)-gYBE Solutions

Results

•
$$S_{01}: |a, b, c > \mapsto |c, b, a >$$

•
$$S_{02}: |a, b, c \rangle \mapsto |\overline{b \oplus c}, b, \overline{a \oplus b} \rangle$$

•
$$S_{03}$$
: $|a, b, c \rangle \mapsto |c, a \oplus b \oplus c, a \rangle$

•
$$S_{04}: |a, b, c > \mapsto |\overline{c}, \overline{a \oplus b \oplus c}, \overline{a} >$$

•
$$S_{05}$$
: $|a, b, c \rangle \mapsto |b \oplus c, b, a \oplus b \rangle$

•
$$S_{06}: |a, b, c > \mapsto |\overline{c}, b, \overline{a} >$$

•
$$S_{07}: |a, b, c > \mapsto |\overline{c}, b, a >$$

•
$$S_{08}: |a, b, c > \mapsto |b \oplus c, b, a \oplus b >$$

•
$$S_{09}$$
: $|a, b, c \rangle \mapsto |b \oplus c, b, a \oplus b \rangle$

•
$$S_{10}: |a, b, c > \mapsto |c, b, \overline{a} >$$

Boolean Representation of Solutions Extension to Larger Solutions

Extension to Larger Solutions: (2, 4, 3)-gYBE Solutions

Remark

• The boolean patterns also extend to (some) permutation (2,4,2)- and (2,4,3)-gYBE solutions.

Boolean Representation of Solutions Extension to Larger Solutions

Extension to Larger Solutions: (2, 4, 3)-gYBE Solutions

Remark

- The boolean patterns also extend to (some) permutation (2,4,2)- and (2,4,3)-gYBE solutions.
- The (2, 4, 2)-gYBE solutions are uninteresting, since they are identical to the (4, 2, 1)-gYBE solutions (4-D YBE solutions) which have been classified.

Boolean Representation of Solutions Extension to Larger Solutions

Extension to Larger Solutions: (2, 4, 3)-gYBE Solutions

Remark

- The boolean patterns also extend to (some) permutation (2,4,2)- and (2,4,3)-gYBE solutions.
- The (2, 4, 2)-gYBE solutions are uninteresting, since they are identical to the (4, 2, 1)-gYBE solutions (4-D YBE solutions) which have been classified.

• There are several new (2, 4, 3) solutions:

•
$$Y_{01}$$
: $|a, b, c, d > \mapsto |d, b, c, a >$
• Y_{02} : $|a, b, c, d > \mapsto |b \oplus c \oplus d, b, c, a \oplus b \oplus c >$
• Y_{03} : $|a, b, c, d > \mapsto |\overline{b \oplus c \oplus d}, b, c, \overline{a \oplus b \oplus c} >$
• Y_{04} : $|a, b, c, d > \mapsto |\overline{b \oplus c \oplus d}, b, c, \overline{a \oplus b \oplus c} >$
• Y_{05} : $|a, b, c, d > \mapsto |b \oplus c \oplus d, b, c, \overline{a \oplus b \oplus c} >$

Other Solutions Open Questions

Other Solutions: The X-Shaped Solution

Remark

 Before my research, the only known solution to the (2,3,2)-gYBE was the so called X-shaped solution:

イロト イヨト イヨト イヨト

Other Solutions Open Questions

Other Solutions: The X-Shaped Solution

Remark

• Before my research, the only known solution to the (2,3,2)-gYBE was the so called X-shaped solution:

$$R_X = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

イロト イヨト イヨト イヨト

Other Solutions Open Questions

Other Solutions: A New Solution

Results

• In addition to the permutation solutions to the (2,3,2)-gYBE, I also found a new solution resembling R_X :

イロト イヨト イヨト イヨト

æ

Other Solutions Open Questions

Other Solutions: A New Solution

Results

• In addition to the permutation solutions to the (2,3,2)-gYBE, I also found a new solution resembling R_X :

$$R_D = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

イロト イヨト イヨト イヨト

Other Solutions Open Questions

Other Solutions: A New Solution

Results

• In addition to the permutation solutions to the (2,3,2)-gYBE, I also found a new solution resembling R_X :

$$R_D = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

• This solution is not locally conjugate to R_X .

イロト イヨト イヨト イヨト

Other Solutions Open Questions

Open Questions

Questions

• Is it possible to represent all 2 dimensional solutions using the Boolean representation presented here?

Other Solutions Open Questions

Open Questions

Questions

- Is it possible to represent all 2 dimensional solutions using the Boolean representation presented here?
- Is there a similar representation for permutation solutions with dimension greater than 2?

Other Solutions Open Questions

Open Questions

Questions

- Is it possible to represent all 2 dimensional solutions using the Boolean representation presented here?
- Is there a similar representation for permutation solutions with dimension greater than 2?
- Are there more (2, 3, 2)-gYBE non-permutation solutions resembling R_X and R_D ?

・ロト ・回ト ・ヨト ・ヨト

Other Solutions Open Questions

Questions?

Andrew S. Nemec Monomial Solutions to Generalized Yang-Baxter Equations in L

<ロ> (四) (四) (注) (注) (三)

Other Solutions Open Questions

Thank You!

Andrew S. Nemec Monomial Solutions to Generalized Yang-Baxter Equations in L

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □