Computing Central Values for Elliptic Curve L-Functions

Meghan Shanks
Advised by Dr. Matthew Young

March 29, 2016

Introduction

Elliptic Curves

- Elliptic Curves are interesting objects in mathematics
- Useful in cryptography
- Related to two of the Clay Mathematics Millennium Prize Problems
- Elliptic curves are generally written in the form $E: y^{2}=x^{3}+a x^{2}+b$
- We are particularly interested in the rational solutions of elliptic curves
- It has been proven that these solutions form a group $E(\mathbb{Q})$
- We know that $E(\mathbb{Q})=E_{\text {tors }} \times \mathbb{Z}^{r}$ where $E_{\text {tors }}$ is a finite group
- The number of copies of \mathbb{Z} contained in $E(\mathbb{Q}), r$, is called the rank of the elliptic curve

L-fucntions

- There are L-functions associated with elliptic curves
- We are primarily interested in the central values of these L-functions
- For a given elliptic curve E, the central value of the L-function is defined as

$$
L(1 / 2, E)=\left(1+\omega_{E}\right) \sum_{n=1}^{\infty} \frac{\lambda_{E}(n)}{\sqrt{n}} \exp \left(\frac{-2 \pi n}{\sqrt{N_{E}}}\right)
$$

- L-functions are useful for understanding other properties of elliptic curves
- For example, Birch and Swinnerton-Dyer conjecture that the rank of an elliptic curve is equal to its analytic rank (the smallest value of r such that $L^{(r)}(1 / 2, E) \neq 0$
- Calculating central values allows us to determine whether an elliptic curve has rank 0
- Unfortunately, since $L(1 / 2, E)$ is defined with an infinite series, it is difficult to calculate efficiently

Methodology

- My research involves developing a more efficient method for calculating the central values of elliptic curves
- Improves upon the methods presented in [HY15]
- Based upon the Birch and Swinnerton-Dyer conjecture which states that for an elliptic curve of rank 0,

$$
\begin{equation*}
L(1 / 2, E)=\frac{\left|Ш_{E}\right| \Omega_{E} c_{E}}{\left|E_{\text {tors }}\right|^{2}} \tag{1}
\end{equation*}
$$

- Algorithm follows the following steps:
(1) Approximate the value of $L(1 / 2, E)$ by summing the first $\delta \sqrt{N_{E}}$ terms for some δ
(2) Use the Birch and Swinnerton-Dyer conjecture to calculate
$\left|Ш_{E, \text { approx }}\right|=\left|\frac{L_{\text {approx }}(1 / 2, E)\left|E_{\text {tors }}\right|^{2}}{\Omega_{E} C_{E}}\right|$
(3) Since $\left|\amalg_{E}\right|$ must be an integer, use the approximation $\left|Ш_{E, \text { approx }}\right|$ to recover the exact value of $\left|Ш_{E}\right|$
(4) Use new value of $\left|Ш_{E}\right|$ to calculate $L(1 / 2, E)=\frac{\left|Ш_{E}\right| \Omega_{E} c_{E}}{\left|E_{\text {tors }}\right|^{2}}$

Theoretical Support

Main Heuristic

Heuristic 2.1.

Let $\delta \geq \frac{1}{24 \pi} \log N_{E}-C_{2} \log \log N_{E}$ for some constant C_{2} such that $4 \pi C_{2}<1$. On average, as the conductor approaches infinity, we expect $\left|\left|Ш_{\text {approx }, E}\right|-\left|Ш_{E}\right|\right|<1 / 2$.

Reasoning:

- We would like to show $\left|Ш_{E, \text { tail }}\right|=\left|\left|\amalg_{\text {approx, } E}\right|-\left|Ш_{E}\right|\right|<\frac{1}{2}$
- Birch and Swinnerton-Dyer conjecture: $\left|\Pi_{E}\right|=\frac{L(1 / 2, E)\left|E_{\text {tors }}\right|^{2}}{\Omega_{E} C_{E}}$
- By our definition: $\left|Ш_{\text {approx }, E}\right|=\frac{L_{\text {approx }}(1 / 2, E)\left|E_{\text {tors }}\right|^{2}}{\Omega_{E} C_{E}}$
- Therefore we can write $\left|Ш_{E, \text { tail }}\right|=\left|\frac{L_{\text {tail }}(1 / 2, E)\left|E_{\text {tors }}\right|^{2}}{\Omega_{E} C_{E}}\right|$
- Need to understand $L_{\text {tail }}$ before we continue

Understanding $L_{\text {tail }}$

- Recall that $L_{\text {tail }}(1 / 2, E)=2 \sum_{n>\delta \sqrt{N_{E}}} \frac{\lambda_{E}(n)}{\sqrt{n}} e^{\frac{-2 \pi n}{\sqrt{N_{E}}}}$
- $L_{\text {tail }}$ is difficult to bound for a generic elliptic curve
- This is partially due to erratic behavior $\lambda_{E}(n)$
- Because of this, we will instead consider the average behavior of $L_{\text {tail }}(1 / 2, E)$ over a family of elliptic curves
- In other words, we will examine $\frac{1}{4|A||B|} \sum_{\substack{|a| \leq A \\|b| \leq B}}\left(L_{\text {tail }, E_{a, b}}\right)^{2}$

Understanding $L_{\text {tail }}$

- In order to understand $\frac{1}{4|A||B|} \sum_{\substack{|a| \leq A \\|b| \leq B}}\left(L_{\text {tail, } E_{a, b}}\right)^{2}$, we need to understand what will happen when we sum $\lambda_{E_{a, b}}(m) \lambda_{E_{a, b}}(n)$ over our family
- Using techniques from [You07] and simplifying assumptions and that are primarily modeled after those in [CFK ${ }^{+} 02$], we can show:

Heuristic 2.2.

Let $A, B, m, n \in \mathbb{Z}$ such that $A, B, m, n>0$. Then

$$
\frac{1}{4|A||B|} \sum_{\substack{|a| \leq A \\|b| \leq B}} \lambda_{E_{a, b}}(m) \lambda_{E_{a, b}}(n)
$$

is approximately 1 when $m=n$ and 0 otherwise.

Understanding $L_{\text {tail }}$

- Since $L_{\text {tail }}(1 / 2, E)=2 \sum_{n>\delta \sqrt{N_{E}}} \frac{\lambda_{E}(n)}{\sqrt{n}} e^{\frac{-2 \pi n}{\sqrt{N_{E}}}}$, we can write

$$
\frac{1}{4|A||B|} \sum_{\substack{|a| \leq A \\|b| \leq B}}\left(L_{\text {tail }, E_{a, b}}\right)^{2} \approx 4 \sum_{n_{1} \geq \delta \sqrt{X_{A, B}}} \sum_{n_{\mathbf{2}} \geq \delta \sqrt{X_{A, B}}} \frac{e^{-2 \pi\left(n_{1}+n_{\mathbf{2}}\right) / \sqrt{X_{A, B}}}}{\sqrt{n_{1} n_{\mathbf{2}}}} \frac{1}{4|A||B|} \sum_{\substack{|a| \leq A \\|b| \leq B}} \lambda_{E_{a, b}}\left(n_{\mathbf{1}}\right) \lambda_{E_{a, b}}\left(n_{\mathbf{2}}\right)
$$

where $X_{A, B}$ is the average of N_{E} over the family

- Notice the inner sum can be rewritten using Heuristic 2.2

$$
\frac{1}{4|A||B|} \sum_{\substack{|a| \leq A \\|b| \leq B}}\left(L_{\text {tail }, E_{a, b}}\right)^{2} \approx 4 \sum_{n \geq \delta \sqrt{x_{A, B}}} \frac{e^{\frac{-4 \pi n}{\sqrt{x_{A, B}}}}}{n}
$$

- Since $n \geq \delta \sqrt{X_{A, B}}$,

$$
4 \sum_{n \geq \delta \sqrt{X_{A, B}}} \frac{e^{\frac{-4 \pi n}{\sqrt{x_{A}, B}}}}{n} \leq \frac{4}{\delta \sqrt{X_{A, B}}} \sum_{n \geq \delta \sqrt{x_{A, B}}} e^{\frac{-4 \pi n}{\sqrt{x_{A}, B}}}
$$

Understanding $L_{\text {tail }}$

- Approximating via integration gives us

$$
\begin{aligned}
\frac{4}{\delta \sqrt{X_{A, B}}} \sum_{n \geq \delta \sqrt{X_{A, B}}} e^{\frac{-4 \pi n}{\sqrt{X_{A, B}}}} & \leq \frac{4 e^{-4 \pi \delta}}{\delta \sqrt{X_{A, B}}}+4 \int_{\delta \sqrt{X_{A, B}}}^{\infty} e^{\frac{-4 \pi t}{\sqrt{X_{A, B}}}} d t \\
& =\frac{4 e^{-4 \pi \delta}}{\delta \sqrt{X_{A, B}}}+\frac{e^{-4 \pi \delta}}{\pi \delta}
\end{aligned}
$$

- For large $X_{A, B}$, the first term is small. Thus we get a second heuristic:

Heuristic 2.3.

$$
\lim _{A, B \rightarrow \infty} \frac{1}{4|A||B|} \sum_{\substack{|a| \leq A \\|b| \leq B}}\left(L_{\text {tail }, E_{a, b}}\right)^{2} \leq \frac{e^{-4 \pi \delta}}{\pi \delta}
$$

Main Heuristic

Now that we understand $L_{\text {tail }}$, we can return to our main heuristic:

Heurisitic 2.1.

Let $\delta \geq \frac{1}{24 \pi} \log N_{E}-C_{2} \log \log N_{E}$ for some constant C_{2} such that $4 \pi C_{2}<1$. On average, as the conductor approaches infinity, we expect $\left|\left|Ш_{\text {approx }, E}\right|-\left|Ш_{E}\right|\right|<1 / 2$.

Reasoning:

- We already determined $\left|\Pi_{E, \text { tail }}\right|=\left|\frac{L_{\text {tail }}(1 / 2, E)\left|E_{\text {tors }}\right|^{2}}{\Omega_{E} C_{E}}\right|$
- $\left|E_{\text {tors }}\right|$ is bounded by a constant
- $\Omega_{E} \asymp N_{E}^{-1 / 12}$ by [Wat08]
- $L_{\text {tail }} \leq \sqrt{\frac{e^{-4 \pi \delta}}{\pi \delta}}$ by 2.3
- Therefore we estimate that, for large conductor,

$$
\left|Ш_{E, \text { tail }}\right| \leq \frac{\sqrt{\frac{e^{-4 \pi \delta}}{\pi \delta}}\left|E_{\text {tors }}\right|^{2}}{N_{E}^{-1 / 12} c_{E}}
$$

Main Heuristic

- Therefore we want to understand how δ must grow so that $\frac{\sqrt{\frac{e^{-4 \pi \delta}}{\pi \delta}}\left|E_{\text {tors }}\right|^{2}}{N_{E}^{-1 / 12} c_{E}}<\frac{1}{2}$ for large conductors
- We rewrite this as $\frac{N_{E}{ }^{1 / 6} e^{-4 \pi \delta}}{4 \pi \delta}<\frac{1}{16 \mid E_{\text {tors }}{ }^{4}}\left(\right.$ since $\left.c_{E} \geq 1\right)$
- When $\delta \geq \frac{1}{24 \pi} \log N_{E}-C_{2} \log \log N_{E}$ for some constant C_{2} :

$$
\begin{aligned}
e^{-4 \pi \delta} & \leq e^{-4 \pi\left(\frac{\mathbf{1}}{24 \pi} \log N_{E}-C_{2} \log \log N_{E}\right)} \\
& =N_{E}^{-\mathbf{1} / 6}\left(\log N_{E}\right)^{4 \pi C_{2}}
\end{aligned}
$$

- Therefore for large N_{E} :

$$
\frac{N_{E}^{1 / 6} e^{-4 \pi \delta}}{4 \pi \delta}<\frac{\left(\log N_{E}\right)^{4 \pi C_{2}}}{\left.\frac{1}{6} \log N_{E}-4 \pi C_{2} \log \log N_{E}\right)}
$$

- When $4 \pi C_{2}<1$ then for large N_{E} this will approach 0 , and thus be smaller than $\frac{1}{2}$ for large enough conductor.

Empirical Support

Empirical Support

- We can also provide empirical support that our method generally works
- In order to test our method, we implemented the algorithm in PARI/GP
- We tested the method on elliptic curves with maximum conductors on the order of 10^{10} and 10^{11}
- In particular, we tested on all elliptic curves $E: y^{2}=x^{3}+a x^{2}+b$ where $630 \leq|a| \leq 900$ and $10000 \leq|b| \leq 14000$ and E is a global minimal model
- Theoretic results tell us that we should pick

$$
\begin{aligned}
\delta & \geq \frac{1}{24 \pi} \log N_{E}-C_{2} \log \log N_{E} \\
& =\frac{1}{24 \pi} \log 10^{11}-\frac{1}{8 \pi} \log \log 10^{11} \\
& \approx 0.2
\end{aligned}
$$

(where we chose $N=10^{11}$ and $C_{2}=\frac{1}{8 \pi}$) to handle the average case

- We use $\delta=0.5$ in order to hopefully account for both the average case and outliers

Empirical Support - Average Case Results - | $Ш_{\text {tail }} \mid$

- By Heuristic 2.1, since we took a large enough δ, we expect $\left|Ш_{\text {tail }}\right|$ to be well under $\frac{1}{2}$

Figure 1: Distribution of $\left|Ш_{\text {tail }}\right|$ Values for Given Elliptic Curves

Empirical Support - Worst Case Results

- Since our theoretical results only discussed the average case, we also want to consider what happens in the worst case

Figure 2: Conductor vs $\left|Ш_{\text {taiil }}\right|$ for Given Elliptic Curves

Empirical Support - Analysis of Outliers

- We are interested in understanding what causes $\left|Ш_{\text {tail }}\right|$ to be large so that we can correct for it when we expect $\left|Ш_{\text {tail }}\right|$ to be much larger than the average case analysis indicates
- Since $\left|Ш_{E, \text { tail }}\right|=\left|\frac{L_{\text {tail }}(1 / 2, E)\left|E_{\text {tors }}\right|^{2}}{\Omega_{E} C_{E}}\right|$, we expect that $\left|Ш_{E, \text { tail }}\right|$ is large when either $\left|L_{\text {tail }}\right|$ or $\left|E_{\text {tors }}\right|$ is large, or when Ω_{E} or c_{E} is small
- Based on data, it appears that $\left|L_{\text {tail }}\right|$ is the most significant factor

Empirical Support - Analysis of Outliers

Figure 3: $L_{\text {tail }}$ vs $\left|Ш_{\text {tail }}\right|$ for Given Elliptic Curves

- $\left|Ш_{E, \text { tail }}\right|$ increases as $\left|L_{\text {tail }}\right|$ increases
- Since Ω_{E} remains relatively constant over the family of Elliptic curves and both c_{E} and $\left|E_{\text {tors }}\right|$ take on discrete values, each band represents a different value of $\frac{\left|E_{\text {tors }}\right|}{C_{E}}$

Empirical Support - Analysis of Outliers

- Leads to question of whether we can predict when an elliptic curve will have large value of $\left|L_{\text {tail }}\right|$

Figure 4: Conductor vs $\left|L_{\text {tail }}\right|$

Figure 7: Discriminant vs $\left|L_{\text {tail }}\right|$

Figure 5: Real Period vs | $L_{\text {tail }} \mid$

Figure 8: Tamagawa Number vs $\left|L_{\text {tail }}\right|$

Figure 6: L vs $\left|L_{\text {tail }}\right|$

Figure 9: Torsion Group Size vs $\left|L_{\text {tail }}\right|$

Empirical Support - Analysis of Outliers

Figure 10: L vs $\left|L_{\text {tail }}\right|$ for Given Elliptic Curves

- High values of L seem to correlate with large $\left|L_{\text {tail }}\right|$
- To account for this, we can adjust our method to use larger δ if our initial approximation of L is unusually large
- Unfortunately, there are also a few outliers when L is close to 0 .
- Since most elliptic curves have L close to 0 , this is an unhelpful characterization

Conclusion

- Our method of calculating central values appears to work both theoretically and empirically
- Using $\delta=0.5$ seems to work well for elliptic curves with conductors on the order of 10^{10} and 10^{11}
- This halves the amount of time it would take to compute using the method presented in [HY15].
- In addition, we have calculated central values for elliptic curves of large conductor that were previously uncalculated
- This data can be used to explore other facets elliptic curves
- Future work could focus on understanding when an elliptic curve can be expected to have a large $\left|L_{\text {taiil }}\right|$
- It would also be useful to extend this to larger derivatives of the L-function so that we can distinguish between elliptic curves of larger rank

References

[CFK ${ }^{+}$02] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith.
Integral moments of L-functions.
arXiv preprint math/0206018, 2002.
[HY15] Dustin Hinkel and Matthew P. Young.
The distribution of central values of elliptic curve L-functions.
Journal of Number Theory, 156:15-20, November 2015.
[Wat08] Mark Watkins.
Some heuristics about elliptic curves.
Experimental Mathematics, 17(1):105-125, 2008.
[You07] Matthew P. Young.
Moments of the critical values of families of elliptic curves, with applications.
arXiv preprint arXiv:0708.4042, 2007.

