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Objective

Error Detection 
• Two running estimates of airspeed from pitot tube and 

accelerometer data: 

𝑉𝑝𝑖𝑡𝑜𝑡 (𝑡) = 
2(𝑃𝑡(𝑡)−𝑃𝑠(𝑡))

ρ𝑎𝑖𝑟(𝑡)
𝑉𝐼𝑁𝑆 𝑡 =  𝑡−1

𝑡
𝑎𝑥 𝑑𝑡

• Anytime |𝑉𝑝𝑖𝑡𝑜𝑡 − 𝑉𝐼𝑁𝑆| > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ, classify the state of the 
system.

System states:
1. Pitot tube block – Airspeed indicator drops to 0
2. Pitot drain block – Total pressure constant
3. Static port block – Static pressure constant

• Hundreds of redundant data streams are recorded in flight.
• Sammons Mapping Function3 was minimized to find lower 

dimensional data sets which preserve the structure and distances of 
the original high dimensional data:
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Classifying the State of the System  
• Erroneous pressure streams are manually simulated for 100 seconds. 

• Autocorrelation for each pressure stream is stored in the error library.
• Autocorrelation is calculated online every 10 seconds.
• Online case is classified into the error library to detect constant 

signals.
• System state is determined using minimum Euclidean distance.

Offline Airspeed Library Results
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• Airspeed predicted using K-nearest neighbors regression.

• This system is able to detect error within 20 seconds.
• Airspeed prediction is within 30 knots of the true airspeed during 

cruise.

• This system will allow pilots to safely navigate an aircraft in 
the event of a pitot static error and provide UAV’s the 
ability to continue flight.

Time (sec)  

Unmanned Aerial Vehicles only have one pitot static system used 
for guidance so system failure can result in critical missions being 
aborted. If autonomous error detection software is developed, 
these missions may be able to continue on.

Motivation 

Our goal is to create a system capable of detecting pitot static 
blocks within 30 seconds of failure. Failures result in inaccurate 
airspeed readings so in addition, we attempt to predict a corrected 
airspeed which lies within 10 knots of the true airspeed. 

Approach
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Inertial Navigation System 1

• In the reduced dimension, the following most informative features 
for predicting airspeed were chosen using simulated annealing 
optimization:

Body Coordinate System2

Using highly reliable Inertial Navigation System (INS) data, we can 
detect pitot static errors and trigger a classification model for 
identifying the state of the system. In the event of a failure, a 
corrected airspeed is predicted using k-nearest neighbors in an 
offline/online paradigm. Initial feature selection and reduction is 
performed on the high dimensional flight data.
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Pitot Static System Diagram1
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Example of K-Nearest Neighbor Classification 
K=3

Class (      ) =  ?
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